Rajender Boddula - Fundamentals of Solar Cell Design

Здесь есть возможность читать онлайн «Rajender Boddula - Fundamentals of Solar Cell Design» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Solar Cell Design: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Solar Cell Design»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production.
Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics.
This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.

Fundamentals of Solar Cell Design — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Solar Cell Design», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 118 Fused nine membered ring fluorodicyanoindenone Zhuping Fei et - фото 21

Figure 1.18 Fused nine membered ring - fluorodicyanoindenone.

Zhuping Fei et al. synthesized low band gap non-fullerene acceptor small molecule, C8-ITIC ( Figure 1.19) [16]. Acceptor molecule has seven contiguously fused rings flanked on either side by indacenodicyano electron withdrawing group and carries four n-octyl alkylchains. Authors employed two donors like (i) PBDB-T polymer and (ii) PFBDB-T polymer. Solar cell devices were fabricated by adopting given configuration: ITO/In 2O 2/ZnO/active layer/MoO 3/Ag. Impressive PV parameters were obtained with conversion efficiency of 13.2% using C8-ITIC and PFBDB-T blend. The energy loss noted in the solar cell device is less than 0.56 eV. Non-fluorinated polymer PBDB-T with C8_ITIC blend recorded lower efficiency. Authors claim that polymer backbone selective fluorination is another important factor to achieve higher conversion efficiencies in organic solar cell devices.

Jianfei Qu et al. synthesized four A-D-A–type non-fullerene small molecule [17] acceptors. Alkyl groups C 2, C 4, C 6, and C 8were selected and were attached to the rhodanine end group having ring Nitrogen ( Figure 1.20). Alkyl groups attached did not have much effect on their absorption properties. But these alkyl groups played a role on the film properties like, crystalinity, molecular packing, manifesting on the PV parameters. PBDB-T polymer was chosen as donor along with one of the acceptors synthesized as a blend material. PV measurements were determined with an inverted device structure: ITO/ZnO/active layer/MoO 3/Ag. PBDB-T polymer donor with C6 small-molecule acceptor blend gave an excellent efficiency of 8.26% PCE. Furthermore, introducing thermal annealing with iodooctane solvent improved the efficiency to 9.29%. Other PV parameters observed were also good: Voc = 0.89V; Jsc = 15.80 mA/cm 2; and FF = 58.12%. Investigations reported in this work indicated that effect of alkyl chain length has a pivotal role in tuning the PV parameters, in making suitable films.

Figure 119 Fused seven membered ring dicyanoindenone Kaili Wang et al - фото 22

Figure 1.19 Fused seven membered ring - dicyanoindenone.

Kaili Wang et al. synthesized calamatic shaped A-D-A–type nonfullerene small-molecule acceptors, CPDT-4Cl and CPDT-4F ( Figure 1.21), by varying chloro and fluoro substituents [18]. CPDT-4Cl and CPDT-4F exhibited absorptions extending in to 900-nm region. PBDB-T was employed as a polymer donor and its light absorption has complementarity with the two CPDT-4Cl and CPDT-4F acceptor molecules and the blend absorption of these (PBDB-T and CPDT-4Cl, and PBDB-T and CPDT-4F) cover 400- to 980-nm region. PV parameters were evaluated by adopting conventional device structure like: ITO/PEDOT-PSS/[PBDBT+Acceptor]/Phen-NaDPO/Ag having 9.47% efficiency for CPDT-4Cl and 9.26% efficiency for CPDT-4F, respectively. Other parameter like Jsc was found to be impressive like 21.3 mA/cm 2for [CPDT-4Cl + PBDB-T] blend and 20.1 mA/cm 2for [CPDT-4F + PBDB-T] blend. Authors express that the non-fullerene–type acceptors with NIR absorption have great scope to improve the organic solar cell efficiency.

Figure 120 Fused seven membered ring acceptors with variation in Nalkyl chain - фото 23

Figure 1.20 Fused seven membered ring acceptors with variation in N-alkyl chain length.

Figure 121 Calamatic shaped nonfullerene smallmolecule acceptors Eun Yi Ko - фото 24

Figure 1.21 Calamatic shaped non-fullerene small-molecule acceptors.

Eun Yi Ko et al. synthesized small acceptor molecules [19] containing dicyanovinylene (DCV 2) and tricycanovinylene (TCV 2) groups ( Figure 1.22) as strong electron accepting moieties. Material properties were determined for IDT(DCV) 2, IDT(TCV) 2, and IDTT(TCV) 2( Figure 1.22) and PTB7-Th polymer used as donor to evaluate PV parameters with an inverted cell structure like ITO/Zno/PTB7-Th+Small Molecule/MoO 3/ Ag. Reasonably good efficiency (2.8% to ~4%) was observed for all the prepared small acceptor molecules. Interestingly, these fabricated devices exhibited relatively high Jsc values as 11.02 to 11.98 mA/cm 2. Thus, fabricated devices were stored in dark without encapsulation for about 1000 h and the device stability was monitored by recording absorption spectrum. The devices were found to be stable to oxygen, moisture, and carbondioxide for over a period of 1,000 hours indicating excellent shelf stability.

Figure 122 Dicyano and tricyano vinylenebased nonfullerene smallmolecule - фото 25

Figure 1.22 Dicyano and tricyano vinylene–based non-fullerene small-molecule acceptors.

Yamin Zhang et al. synthesized [20] non-fullerene acceptor smallmolecule F-2Cl by chlorination of parent molecule ( Figure 1.23). PBDB-T polymer donor was difluorinated to make PM6 with changed HOMO and LUMO values. F-2Cl has absorption covering the range of 500 to 800 nm and PM6 has absorption covering the region of 400 to 680 nm with complementarity covering wide absorption range. The conventional solar device structure using F-2Cl as acceptor and PM6 as donor with a solar cell film thickness of 103 nm provided very good efficiency of 12.59% PCE with Voc of 0.94 V; Jsc of 17.96 mA/cm 2; and FF of 77%. The total solar cell film thickness was changed to 600 nm by improving the active blend layer to get solar cell parameters like, Voc of 0.879 V; Jsc of 19.61 mA/cm 2; FF of 58%; and solar cell efficiency of 10.05%. Authors mentioned that there are some changes leading to decrease the solar cell parameters, but the efficiency of 10.05% is remarkable considering the active layer blend thickness of 600 nm. Authors explained that the morphology of the thick film (600 nm thickness) played key role in the observed efficiency.

Figure 123 Dichlorodicyanoindocinyl based smallmolecule acceptors Yanbo - фото 26

Figure 1.23 Dichloro-dicyano-indocinyl based small-molecule acceptors.

Yanbo Wang et al . synthesized [21] seven rings fused contiguously with either sides carrying halo-dicyanoindacenyl group ( Figure 1.24) compounds F-H, F-F, F-Cl, and F-Bras non-fullerene small-molecule acceptors. PBDB-T polymer was used as donor in these investigations. A change in energy levels (HOMO and LUMO; Figure 1.24) of three compounds ( F-F, F-Cl, and F-Br) carrying halogen was evident upon substituting hydrogen with halogen. All the molecules exhibited strong absorption in the region 550 to 700 nm. Solar cell device structure adopted was ITO/POEDOT-PSS/PBDB-T + Acceptor/PDINDO/Al. The trend of efficiency, 9.59% for F-H, 10.85 for F-F, 11.47 for F-Cl, and 12.05 for F-Br, indicated that halogen substitution improved efficiency of fabricated solar cell. Tuning the light absorption, crystallinity of film and mobilities of non-fullerene acceptors may be contributing factors for improving the performance of fabricated solar cells. Reported investigations inform that design of halogenation strategy on non-fullerene small-molecule acceptors has a role to play in future research.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Solar Cell Design»

Представляем Вашему вниманию похожие книги на «Fundamentals of Solar Cell Design» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Solar Cell Design»

Обсуждение, отзывы о книге «Fundamentals of Solar Cell Design» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x