Andrei M. Shkel - Pedestrian Inertial Navigation with Self-Contained Aiding

Здесь есть возможность читать онлайн «Andrei M. Shkel - Pedestrian Inertial Navigation with Self-Contained Aiding» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Pedestrian Inertial Navigation with Self-Contained Aiding: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Pedestrian Inertial Navigation with Self-Contained Aiding»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore an insightful summary of the major self-contained aiding technologies for pedestrian navigation from established and emerging leaders in the field  Pedestrian Inertial Navigation with Self-Contained Aiding The most commonly used implementation of pedestrian inertial navigation, strapdown inertial navigation, is discussed at length, as are the mechanization, implementation, error analysis, and adaptivity of zero-velocity update aided inertial navigation algorithms. The book demonstrates the implementation of ultrasonic sensors, ultra-wide band (UWB) sensors, and magnetic sensors. Ranging techniques are considered as well, including both foot-to-foot ranging and inter-agent ranging, and learning algorithms, navigation with signals of opportunity, and cooperative localization are discussed. Readers will also benefit from the inclusion of: 
A thorough introduction to the general concept of navigation as well as major navigation and aiding techniques An exploration of inertial navigation implementation, Inertial Measurement Units, and strapdown inertial navigation A discussion of error analysis in strapdown inertial navigation, as well as the motivation of aiding techniques for pedestrian inertial navigation A treatment of the zero-velocity update (ZUPT) aided inertial navigation algorithm, including its mechanization, implementation, error analysis, and adaptivity Perfect for students and researchers in the field who seek a broad understanding of the subject, 
 will also earn a place in the libraries of industrial researchers and industrial marketing analysts who need a self-contained summary of the foundational elements of the field.

Pedestrian Inertial Navigation with Self-Contained Aiding — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Pedestrian Inertial Navigation with Self-Contained Aiding», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

References

1 1 Bowditch, N. (2002). The American Practical Navigator, Bicentennial Edition. Bethesda, MD: National Imagery and Mapping Agency.

2 2 Sobel, D. (2005). Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific Problem of His Time. Macmillan.

3 3 Hofmann‐Wellenhof, B., Lichtenegger, H., and Wasle, E. (2007). GNSS‐Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer Science & Business Media.

4 4 Titterton, D. and Weston, J. (2004). Strapdown Inertial Navigation Technology, 2e, vol. 207. AIAA.

5 5 Woodman, O.J. (2007). An Introduction to Inertial Navigation. No. UCAM‐CL‐TR‐696. University of Cambridge Computer Laboratory.

6 6 Wagner, J. and Trierenberg, A. (2010). The machine of Bohnenberger: bicentennial of the gyro with cardanic suspension. Proceedings in Applied Mathematics and Mechanics 10 (1): 659–660.

7 7 Prikhodko, I.P., Zotov, S.A., Trusov, A.A., and Shkel, A.M. (2012). Foucault pendulum on a chip: rate integrating silicon MEMS gyroscope. Sensors and Actuators A: Physical 177: 67–78.

8 8 Tazartes, D. (2014). An historical perspective on inertial navigation systems. IEEE International Symposium on Inertial Sensors and Systems (ISISS), Laguna Beach, CA, USA (25–26 February 2014).

9 9 Ma, M., Song, Q., Li, Y., and Zhou, Z. (2017). A zero velocity intervals detection algorithm based on sensor fusion for indoor pedestrian navigation. IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China (15–17 December 2017).

10 10 Perlmutter, M. and Robin, L. (2012). High‐performance, low cost inertial MEMS: a market in motion!. IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA (23–26 April 2012).

11 11 Jopling, P.F. and Stameris, W.A. (1970). Apollo guidance, navigation and control‐design survey of the Apollo inertial subsystem.

12 12 Foxlin, E. (2005). Pedestrian tracking with shoe‐mounted inertial sensors. IEEE Computer Graphics and Applications 25 (6): 38–46.

13 13 Harle, R. (2013). A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials 15 (3): 1281–1293.

14 14 Díez, L.E., Bahillo, A., Otegui, J., and Otim, T. (2018). Step length estimation methods based on inertial sensors: a review. IEEE Sensors Journal 18 (17): 6908–6926.

15 15 Köse, A., Cereatti, A., and Della Croce, U. (2012). Bilateral step length estimation using a single inertial measurement unit attached to the pelvis. Journal of Neuroengineering and Rehabilitation 9 (1): 1–10.

16 16 Miyazaki, S. (1997). Long‐term unrestrained measurement of stride length and walking velocity utilizing a piezoelectric gyroscope. IEEE Transactions on Biomedical Engineering 44 (8): 753–759.

17 17 Bishop, E. and Li, Q. (2010). Walking speed estimation using shank‐mounted accelerometers. IEEE International Conference on Robotics and Automation, Anchorage, AK, USA (3–7 May 2010).

18 18 Omr, M. (2015). Portable navigation utilizing sensor technologies in wearable and portable devices. PhD dissertation. Department of Electrical and Computer Engineering, Queens University.

19 19 Renaudin, V., Susi, M., and Lachapelle, G. (2012). Step length estimation using handheld inertial sensors. Sensors 12 (7): 8507–8525.

20 20 Munoz Diaz, E. (2015). Inertial pocket navigation system: unaided 3D positioning. Sensors 15 (4): 9156–9178.

21 21 Beauregard, S. (2006). A helmet‐mounted pedestrian dead reckoning system. VDE International Forum on Applied Wearable Computing, Bremen, Germany (15–16 March 2006).

22 22 Park, J.‐G., Patel, A., Curtis, D. et al. (2012). Online pose classification and walking speed estimation using handheld devices. ACM Conference on Ubiquitous Computing, New York City, NY, USA (September 2012).

23 23 Wang, Y., Jao, C.‐S., and Shkel, A.M. (2021) Scenario‐dependent ZUPT‐aided pedestrian inertial navigation with sensor fusion. Gyroscopy and Navigation 12 (1).

24 24 Laverne, M., George, M., Lord, D. et al. (2011). Experimental validation of foot to foot range measurements in pedestrian tracking. ION GNSS Conference, Portland, OR, USA (19–23 September 2011).

25 25 Wang, Y., Lin, Y.‐W., Askari, S. et al. (2020). Compensation of systematic errors in ZUPT‐aided pedestrian inertial navigation. IEEE/ION Position Location and Navigation Symposium (PLANS), Portland, OR, USA (20–23 April 2020).

26 26 TDK InvenSense (2020). ICP‐10100 Barometric Pressure Sensor Datasheet.

27 27 Cui, X., Gulliver, T.A., Li, J., and Zhang, H. (2016). Vehicle positioning using 5G millimeter‐wave systems. IEEE Access 4: 6964–6973.

28 28 Gersdorf, B. and Freese, U. (2013). A Kalman filter for odometry using a wheel mounted inertial sensor. International Conference on Informatics in Control, Automation and Robotics (ICINCO) (1), 388–395.

29 29 Jimenez, A.R., Seco, F., Prieto, J.C., and Guevara, J. (2010). Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot‐mounted IMU. IEEE Workshop on Positioning Navigation and Communication (WPNC), Dresden, Germany (11–12 March 2010).

30 30 Mezentsev, O. and Collin, J. (2019). Design and performance of wheel‐mounted MEMS IMU for vehicular navigation. IEEE International Symposium on Inertial Sensors & Systems, Naples, FL, USA (1–5 April 2019).

31 31 Zheng, Y., Liu, Q., Chen, E. et al. (2014). Time series classification using multi‐channels deep convolutional neural networks. International Conference on Web‐Age Information Management, Macau, China (16–18 June 2014), pp. 298–310.

32 32 Hannink, J., Kautz, T., Pasluosta, C.F. et al. (2017). Mobile stride length estimation with deep convolutional neural networks. IEEE Journal of Biomedical and Health Informatics 22 (2): 354–362.

33 33 Wagstaff, B., Peretroukhin, V., and Kelly, J. (2017). Improving foot‐mounted inertial navigation through real‐time motion classification. IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan (18–21 September 2017).

34 34 Fan, L., Wang, Z., and Wang, H. (2013). Human activity recognition model based on decision tree. IEEE International Conference on Advanced Cloud and Big Data, Nanjing, China (13–15 December 2013).

35 35 Wang, Y. and Shkel, A.M. (2021) Learning‐based floor type identification in ZUPT‐aided pedestrian inertial navigation. IEEE Sensors Conference 5.

36 36 Askari, S., Jao, C.‐S., Wang, Y., and Shkel, A.M. (2019). Learning‐based calibration decision system for bio‐inertial motion application. IEEE Sensors Conference, Montreal, Canada (27–30 October 2019).

37 37 Anguita, D., Ghio, A., Oneto, L. et al. (2012). Human activity recognition on smartphones using a multiclass hardware‐friendly support vector machine. In: International Workshop on Ambient Assisted Living, 216–223. Berlin, Heidelberg: Springer‐Verlag.

38 38 Ordóñez, F.J. and Roggen, D. (2016). Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16 (1): 115.

39 39 Olsson, F., Rantakokko, J., and Nygards, J. (2014). Cooperative localization using a foot‐mounted inertial navigation system and ultrawideband ranging. IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea (27–30 October 2014).

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Pedestrian Inertial Navigation with Self-Contained Aiding»

Представляем Вашему вниманию похожие книги на «Pedestrian Inertial Navigation with Self-Contained Aiding» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Pedestrian Inertial Navigation with Self-Contained Aiding»

Обсуждение, отзывы о книге «Pedestrian Inertial Navigation with Self-Contained Aiding» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x