Romeo Ortega - PID Passivity-Based Control of Nonlinear Systems with Applications

Здесь есть возможность читать онлайн «Romeo Ortega - PID Passivity-Based Control of Nonlinear Systems with Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

PID Passivity-Based Control of Nonlinear Systems with Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «PID Passivity-Based Control of Nonlinear Systems with Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the foundational and advanced subjects associated with proportional-integral-derivative controllers from leading authors in the field  In 
, expert researchers and authors Drs. Romeo Ortega, Jose Guadalupe Romero, Pablo Borja, and Alejandro Donaire deliver a comprehensive and detailed discussion of the most crucial and relevant concepts in the analysis and design of proportional-integral-derivative controllers using passivity techniques. The accomplished authors present a formal treatment of the recent research in the area and offer readers practical applications of the developed methods to physical systems, including electrical, mechanical, electromechanical, power electronics, and process control. 
The book offers the material with minimal mathematical background, making it relevant to a wide audience. Familiarity with the theoretical tools reported in the control systems literature is not necessary to understand the concepts contained within. You’ll learn about a wide range of concepts, including disturbance rejection via PID control, PID control of mechanical systems, and Lyapunov stability of PID controllers. 
Readers will also benefit from the inclusion of: 
A thorough introduction to a class of physical systems described in the port-Hamiltonian form and a presentation of the systematic procedures to design PID-PBC for them An exploration of the applications to electrical, electromechanical, and process control systems of Lyapunov stability of PID controllers Practical discussions of the regulation and tracking of bilinear systems via PID control and their application to power electronics and thermal process control A concise treatment of the characterization of passive outputs, incremental models, and Port Hamiltonian and Euler-Lagrange systems Perfect for senior undergraduate and graduate students studying control systems, 
 will also earn a place in the libraries of engineers who practice in this area and seek a one-stop and fully updated reference on the subject.

PID Passivity-Based Control of Nonlinear Systems with Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «PID Passivity-Based Control of Nonlinear Systems with Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Proposition 2.1:

Consider the feedback system depicted in Figure 2.1, where is the nonlinear system (1), is the PID controller of 2.1 and is an external signal. Assume the interconnection is well defined.1 If the mapping is passive, the operator is ‐stable. More precisely, there exists such that

Figure 21Block diagram representation of the closedloop system of Proposition - фото 138

Figure 21Block diagram representation of the closedloop system of Proposition - фото 139

Figure 2.1Block diagram representation of the closed‐loop system of Proposition 2.1.

Remark 2.1:

From Proposition 2.1, we have that, for all signals PID PassivityBased Control of Nonlinear Systems with Applications - изображение 140, the output PID PassivityBased Control of Nonlinear Systems with Applications - изображение 141. Under some additional assumptions, it also follows that PID PassivityBased Control of Nonlinear Systems with Applications - изображение 142. For instance, the latter property holds true, with картинка 143, under the very weak assumption that there exists a steady‐state with картинка 144and картинка 145constants. Invoking Theorem A.2 it follows that convergence of the output to zero is also achieved if картинка 146is passive with a positive definite (with respect to the origin) storage function and the output картинка 147is zero‐state detectable. Also, we note that the use of passivity in the design can potentially produce, in some cases, slow responses that cannot be improved due to limited tuning parameters, see, for instance, Section 4.5.

Remark 2.2:

There are many important practical issues regarding PIDs that are not discussed in the book. For instance, the need to introduce an anti‐windup mechanism in the presence of saturation, limitations of the derivative gain, filtering the derivative action, and the use of other architectures of the PID. Also, the simplicity of the PID structure imposes limitations, for example on the set of unstable plants that can be stabilized with this class of controller and the difficulty of handling time delays and complex systems. For a detailed discussion of these, and other PID implementation issues, the interested reader is referred to Ang et al. (2005), Åstrom and Hägglund (1995, 2001), and Åstrom (2018).

2.2 Well‐Posedness Conditions

As discussed earlier, it is necessary to ensure that the control law 2.1can be computed without differentiation nor singularities. The latter may arise due to the presence of the derivative term картинка 148. Clearly, this term can be added only when the output картинка 149has relative degree one, that is, when картинка 150. 2 But even for systems without a derivative action, a singularity may appear for systems with relative degree zero, that is with картинка 151.

The required well‐posedness assumptions in both cases are stated in the lemma below, whose proof follows immediately computing the expressions of картинка 152for the closed‐loop system. As will become clear below, the assumptions are technical only, and rather weak, but they are given for the sake of completeness.

Lemma 2.2

If the system has relative degree zero, that is , the feedback system of Figure 2.1 with is well‐posed if the matrix

is fullrank On the other hand if the system has relative degree one that is - фото 153

is full‐rank. On the other hand, if the system has relative degree one, that is and , the feedback system is well posed if the matrix

is fullrank Remark 23 As a final comment of this section we note that - фото 154

is full‐rank.

Remark 2.3:

As a final comment of this section, we note that in van der Schaft (2016), PID control is viewed from a different perspective. Namely, assuming that картинка 155is computable , it is shown that the closed‐loop system can be represented as a pH system with algebraic constraints . However, leaving aside the complexity of computing картинка 156, the stability analysis of this kind of systems remains an essentially open question.

2.3 PID‐PBC and the Dissipation Obstacle

In this section, we reveal a subtle aspect of the practical application of PID‐PBC, namely that for passive systems of relative degree one, there exists a steady state only if the energy extracted from the controller is zero at the equilibrium. The latter condition is known in PBC as dissipation obstacle and is present in many physical systems, for instance, all electrical circuits with leaky energy storing elements operating in nonzero equilibria – i.e. capacitors in parallel, or inductors in series, with resistors. Interestingly, this obstacle is absent in position regulation of mechanical systems since dissipation (due to Coulomb friction) is zero at standstill.

After briefly recalling the nature and mathematical definition of the dissipation obstacle, we prove the claim of inexistence of equilibria stated above in a more general context than just PID‐PBC, namely for all dynamic controllers incorporating an integral action on a passive output of relative degree one.

2.3.1 Passive Systems and the Dissipation Obstacle

To mathematically define the dissipation obstacle of a passive system with storage function let us compute its derivative 22 As a corollary of HillMoylans - фото 157, let us compute its derivative

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «PID Passivity-Based Control of Nonlinear Systems with Applications»

Представляем Вашему вниманию похожие книги на «PID Passivity-Based Control of Nonlinear Systems with Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «PID Passivity-Based Control of Nonlinear Systems with Applications»

Обсуждение, отзывы о книге «PID Passivity-Based Control of Nonlinear Systems with Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x