Romeo Ortega - PID Passivity-Based Control of Nonlinear Systems with Applications

Здесь есть возможность читать онлайн «Romeo Ortega - PID Passivity-Based Control of Nonlinear Systems with Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

PID Passivity-Based Control of Nonlinear Systems with Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «PID Passivity-Based Control of Nonlinear Systems with Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explore the foundational and advanced subjects associated with proportional-integral-derivative controllers from leading authors in the field  In 
, expert researchers and authors Drs. Romeo Ortega, Jose Guadalupe Romero, Pablo Borja, and Alejandro Donaire deliver a comprehensive and detailed discussion of the most crucial and relevant concepts in the analysis and design of proportional-integral-derivative controllers using passivity techniques. The accomplished authors present a formal treatment of the recent research in the area and offer readers practical applications of the developed methods to physical systems, including electrical, mechanical, electromechanical, power electronics, and process control. 
The book offers the material with minimal mathematical background, making it relevant to a wide audience. Familiarity with the theoretical tools reported in the control systems literature is not necessary to understand the concepts contained within. You’ll learn about a wide range of concepts, including disturbance rejection via PID control, PID control of mechanical systems, and Lyapunov stability of PID controllers. 
Readers will also benefit from the inclusion of: 
A thorough introduction to a class of physical systems described in the port-Hamiltonian form and a presentation of the systematic procedures to design PID-PBC for them An exploration of the applications to electrical, electromechanical, and process control systems of Lyapunov stability of PID controllers Practical discussions of the regulation and tracking of bilinear systems via PID control and their application to power electronics and thermal process control A concise treatment of the characterization of passive outputs, incremental models, and Port Hamiltonian and Euler-Lagrange systems Perfect for senior undergraduate and graduate students studying control systems, 
 will also earn a place in the libraries of engineers who practice in this area and seek a one-stop and fully updated reference on the subject.

PID Passivity-Based Control of Nonlinear Systems with Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «PID Passivity-Based Control of Nonlinear Systems with Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.2) As a corollary of HillMoylans theorem see Theorem A1 we see that the only - фото 158

As a corollary of Hill–Moylan's theorem, see Theorem A.1, we see that the only passive output of relative degree one is the so‐called natural output , that we identify with the subindex PID PassivityBased Control of Nonlinear Systems with Applications - изображение 159, and is given by

(2.3) PID PassivityBased Control of Nonlinear Systems with Applications - изображение 160

Substituting the definition above in 2.2, we can give to it the interpretation of power‐balance equation, where PID PassivityBased Control of Nonlinear Systems with Applications - изображение 161is the energy stored by the system, PID PassivityBased Control of Nonlinear Systems with Applications - изображение 162is the supplied power and PID PassivityBased Control of Nonlinear Systems with Applications - изображение 163is the system's dissipation. In passivity theory, it is said that the system картинка 164 does not suffer from the dissipation obstacle – at an assignable equilibrium PID PassivityBased Control of Nonlinear Systems with Applications - изображение 165– if

(2.4) PID PassivityBased Control of Nonlinear Systems with Applications - изображение 166

Notice that for pH systems, see Definition D.1, the dissipation obstacle translates into

(2.5) PID PassivityBased Control of Nonlinear Systems with Applications - изображение 167

where картинка 168is the dissipation matrix and картинка 169is a bona fide energy function – yielding a clear physical interpretation.

The dissipation obstacle is a phenomenon whose origin is the existence of pervasive dissipation, that is, dissipation that is present even at the equilibrium state. It is a multifaceted phenomenon that has been discussed at length in the PBC literature, where it is shown that the key energy shaping step of PBC (Ortega et al., 2008, Proposition 1), the generation of Casimir functions for CbI (van der Schaft, 2016, Remark 7.1.9) and the assignment of a minimum at the desired point to the shaped energy function (Zhang et al., 2015, Proposition 2) are all stymied by the dissipation obstacle.

2.3.2 Steady‐State Operation and the Dissipation Obstacle

The proposition below shows that the application of PID‐PBC with the natural output is severely stymied by the dissipation obstacle. Actually, we will prove a much more general result that contains, as a particular case, the PID‐PBC scenario.

Proposition 2.2:

Consider the system with passive output 23 and a dynamic extension where Define the overall - фото 170 with passive output 2.3 and a dynamic extension

PID PassivityBased Control of Nonlinear Systems with Applications - изображение 171

where . Define the overall system dynamics as , where . A necessary condition for the existence of a constant solution to the equilibrium equation

PID PassivityBased Control of Nonlinear Systems with Applications - изображение 172

is that the system does not suffer from the dissipation obstacle, i.e., 2.4 holds.

Proof . The proof is established as follows:

Now On the other hand The proof is completed subs - фото 173

Now

On the other hand The proof is completed substituting the last identity in - фото 174

On the other hand,

The proof is completed substituting the last identity in the one above Remark - фото 175

The proof is completed substituting the last identity in the one above.

Remark 2.4:

An immediate corollary of Proposition 2.2is that the dissipation obstacle hampers the application of PID‐PBC for nonzero equilibrium with the natural passive output.

Remark 2.5:

As shown in Ortega et al. (2008), van der Schaft (2016), Venkatraman and van der Schaft (2010), and Zhang et al. (2015), one way to overcome the dissipation obstacle is to generate relative degree zero outputs. However, it is then not possible to add a derivative term to the controller that, due to its “prediction‐like” feature, is useful in some applications. In Chapter 6, we propose a new construction of PID‐PBC, where it is possible to add a derivative action to systems where the dissipation obstacle is present. We will also show that the integral and derivative terms perform the energy‐shaping process, while the proportional term completes the PBC design by injecting damping into the closed‐loop system.

2.4 PI‐PBC with and Control by Interconnection

In this section, we give an interpretation of proportional‐integral (PI) PBC with the natural output картинка 176as a particular case of CbI, which is a physically (and conceptually) appealing method to stabilize equilibria of nonlinear systems widely studied in the literature, cf, Duindam et al. (2009), Ortega et al. (2008), and van der Schaft (2016).

CbI has been mainly studied for pH systems, where the physical properties can be fully exploited to give a nice interpretation to the control action, viewed not with the standard signal‐processing viewpoint, but as an energy exchange process. Here, we present CbI in the more general case of the картинка 177‐system which we assume passive with storage function and the controller w - фото 178, which we assume passive with storage function and the controller with which is also passive with storage fun - фото 179, and the controller

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «PID Passivity-Based Control of Nonlinear Systems with Applications»

Представляем Вашему вниманию похожие книги на «PID Passivity-Based Control of Nonlinear Systems with Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «PID Passivity-Based Control of Nonlinear Systems with Applications»

Обсуждение, отзывы о книге «PID Passivity-Based Control of Nonlinear Systems with Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x