Magma Redox Geochemistry

Здесь есть возможность читать онлайн «Magma Redox Geochemistry» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Magma Redox Geochemistry: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Magma Redox Geochemistry»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Magma Redox Geochemistry
Magma Redox Geochemistry
Volume highlights include: Magma Redox Geochemistry
The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Magma Redox Geochemistry — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Magma Redox Geochemistry», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

45 Chin, E. J., Shimizu, K., Bybee, G. M., & Erdman, M. E. (2018). On the development of the calc‐alkaline and tholeiitic magma series: A deep crustal cumulate perspective. Earth and Planetary Science Letters, 482, 277–287. doi: 10.1016/j.epsl.2017.11.016

46 Christie, D. M., Carmichael, I. S. E., & Langmuir, C. H. (1986). Oxidation‐states of Midocean Ridge basalt glasses. Earth and Planetary Science Letters, 79(3–4), 397–411.

47 Chulick, G. S., Detweiler, S., & Mooney, W. D. (2013). Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. Journal of South American Earth Sciences, 42, 260–276. doi: 10.1016/j.jsames.2012.06.002

48 Coombs, M. L., & Gardner, J. E. (2001). Shallow‐storage conditions for the rhyolite of the 1912 eruption at Novarupta, Alaska. Geology, 29(9), 775–778. doi: 10.1130/0091‐7613(2001)029<0775:sscftr>2.0.co;2.

49 Cottrell, E., & Kelley, K. A. (2011). The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth and Planetary Science Letters, 305(3–4), 270–282. doi: 10.1016/j.epsl.2011.03.014

50 Cottrell, E., Kelley, K. A., Lanzirotti, A., & Fischer, R. A. (2009). High‐precision determination of iron oxidation state in silicate glasses using XANES. Chemical Geology, 268(3–4), 167–179. doi: 10.1016/j.chemgeo.2009.08.008

51 Cottrell, E., Birner, S. K., Brounce, M., Davis, F. A., Waters, L. E., & Kelley, K. A. (2021). Oxygen Fugacity Across Tectonic Settings, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). http://doi.org/10.26022/IEDA/111899

52 Cottrell, E., Lanzirotti, A., Mysen, B., Birner, S., Kelley, K. A., Botcharnikov, R., et al. (2018). A Mössbauer‐based XANES calibration for hydrous basalt glasses reveals radiation‐induced oxidation of Fe. American Mineralogist: Journal of Earth and Planetary Materials, 103(4), 489–501.

53 Crabtree, S., & Lange, R. (2011). An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: a comparison of pre‐ and post‐eruptive Fe2+ concentrations. Contributions to Mineralogy and Petrology, 163, 209–224. doi: 10.1007/s00410‐011‐0667‐7

54 Crabtree, S. M., & Lange, R. A. (2011). Complex phenocryst textures and zoning patterns in andesites and dacites: Evidence of degassing‐induced rapid crystallization? Journal of Petrology, 52(1), 3–38. doi: 10.1093/petrology/egq067

55 Crabtree, S. M., & Waters, L. E. (2017). The petrologic history of the Sanganguey volcanic field, Nayarit, Mexico: Comparisons in a suite of crystal‐rich and crystal‐poor lavas. Journal of Volcanology and Geothermic Research, 336, 51–67. doi: 10.1016/j.jvolgeores.2017.02.005.

56 Darbyshire, F. A., White, R. S., & Priestley, K. F. (2000). Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth and Planetary Science Letters, 181, 409–428.

57 Das, T., & Nolet, G. (1998). Crustal thickness map of the western United States by partitioned waveform inversion. Journal of Geophysical Research: Solid Earth, 103(B12), 30021–30038.

58 Dasgupta, R., Jackson, M. G., & Lee, C.‐T. A. (2010). Major element chemistry of ocean island basalts – Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters, 289(3–4), 377–392.

59 Dauphas, N., Craddock, P. R., Asimow, P. D., Bennett, V. C., Nutman, A. P., & Ohnenstetter, D. (2009). Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth and Planetary Science Letters, 288(1–2), 255–267.

60 Davis, F. A., & Cottrell, E. (2018). Experimental investigation of basalt and peridotite oxybarometers: implications for spinel thermodynamic models and Fe3+ compatibility during generation of upper mantle melts. American Mineralogist, 103(7), 1056–1067. doi: http://doi.org/10.2138/am‐2018‐6280

61 Davis, F. A., Humayun, M., Hirschmann, M. M., & Cooper, R. S. (2013). Experimentally determined mineral/melt partitioning of first‐row transition elements (FRTE) during partial melting of peridotite at 3GPa, Geochimica et Cosmochimica Acta, 104, 232–260. doi: 10.1016/j.gca.2012.11.009

62 Davis, F. A., Cottrell, E., Birner, S. K., Warren, J. M., & Lopez, O. G. (2017). Revisiting the electron microprobe method of spinel‐olivine‐orthopyroxene oxybarometry applied to spinel peridotites. American Mineralogist, 102(2), 421–435.

63 Debret, B., Andreani, M., Muñoz, M., Bolfan‐Casanova, N., Carlut, J., Nicollet, C., et al. (2014). Evolution of Fe redox state in serpentine during subduction. Earth and Planetary Science Letters, 400, 206–218. doi: 10.1016/j.epsl.2014.05.03

64 Devine, J. D., Rutherford, M. J., Norton, G. E., & Young, S. R. (2003). Magma storage region processes inferred from geochemistry of Fe‐Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. Journal of Petrology, 44(8), 1375–1400. doi: 10.1093/petrology/44.8.1375

65 El‐Rus, M. A. A., Neumann, E. R., & Peters, V. (2006). Serpentinization and dehydration in the upper mantle beneath Fuerteventura (eastern Canary Islands): Evidence from mantle xenoliths. Lithos, 89(1), 24–46.

66 Elliott, T., Plank, T., Zindler, A., White, W., & Bourdon, B. (1997). Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102(B7), 14991–15019.

67 Eugster, H. (1957). Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. The Journal of Chemical Physics, 26(6), 1760–1761.

68 Eugster, H. P. (Ed.) (1959). Oxidation and reduction in metamorphism, New York: John Wiley & Sons. 397–426 pp.

69 Evans, K. A. (2021), Redox decoupling, redox budgets and magma recycling. In: D. R. Neuville and R. Moretti, (eds.) AGU Geophysical Monograph Redox variables and mechanisms in magmatism and volcanism. Wiley.

70 Evans, K. A., & Tomkins, A. G. (2011). The relationship between subduction zone redox budget and arc magma fertility. Earth and Planetary Science Letters, 308, 401–409. doi: 10.1016/j.epsl.2011.06.009

71 Evans, K. A., Elburg, M. A., & Kamenetsky, V. S. (2012). Oxidation state of subarc mantle. Geology, 40(9), 783–786. doi: 10.1130/g33037.1

72 Ewart, A. (1979). A review of the mineralogy and chemistry of Tertiary‐recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. Developments in Petrology, 6, 13–121.

73 Farner, M. J., & Lee, C.‐T. A. (2017). Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters, 470, 96–107. doi: 10.1016/j.epsl.2017.04.025

74 Farnetani, C. G., & Hofmann, A. W. (2010). Dynamics and internal structure of the Hawaiian plume. Earth and Planetary Science Letters, 295(1–2), 231–240. doi: 10.1016/j.epsl.2010.04.005

75 Ferrari, L., Orozco‐Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans‐Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122–149. doi: 10.1016/j.tecto.2011.09.018

76 Finotello, M., Nyblade, A., Julià, J., Wiens, D. A., & Anandakrishnana, S. (2011). Crustal Vp‐Vs ratios and thicknesses for Ross Island and the Transantarctic Mountain front, Antarctica. Geophysical Journal International, 185, 85–92.

77 Fleet, M. E., Liu, X., Harmer, S. L., & King, P. L. (2005). Sulfur K‐edge XANES spectroscopy: Chemical state and content of sulfur in silicate glasses. The Canadian Mineralogist, 43(5), 1605–1618.

78 Foden, J., Sossi, P. A., & Nebel, O. (2018). Controls on the iron isotopic composition of global arc magmas. Earth and Planetary Science Letters, 494, 190–201. doi: 10.1016/j.epsl.2018.04.039

79 French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525, 95–99. doi: 10.1038/nature14876

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Magma Redox Geochemistry»

Представляем Вашему вниманию похожие книги на «Magma Redox Geochemistry» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Magma Redox Geochemistry»

Обсуждение, отзывы о книге «Magma Redox Geochemistry» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x