Edward O. Pyzer-Knapp - Deep Learning for Physical Scientists

Здесь есть возможность читать онлайн «Edward O. Pyzer-Knapp - Deep Learning for Physical Scientists» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Deep Learning for Physical Scientists: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Deep Learning for Physical Scientists»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field  Deep Learning for Physical Scientists: Accelerating Research with Machine Learning Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. 
From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: 
A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, 
 will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. 
Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.  This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: •Basic classification and regression with perceptrons •Training

Deep Learning for Physical Scientists — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Deep Learning for Physical Scientists», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

$> conda install notebook

2.4.1 Why Use a Notebook?

Standard Python scripts have their advantages – the code can be contained within a single file that can easily be run and debugged, without the need to step through and run multiple cells of code. Comments can be added to describe blocks of code, and docstrings can be used to provide more comprehensive descriptions of the script's functionality. So why use a notebook?

While Python scripts have a number of advantages while writing code, there are several shortfalls for their use in sharing your work. Comments and docstrings easily become overwhelming when detailed descriptions are required – turning a clean script into an awkward mess of comments and code blocks. This can make it difficult for others to read and understand what's going on. Furthermore, it does not allow you to incorporate plotting or other visualisations alongside your text. This is where notebooks come in.

Notebooks allow you to create a well‐structured document that incorporates executable code. The structuring allows you to create a comprehensive, flowing document – in the same way that you would for a paper or report. Unlike a traditional document, notebooks are enriched by their ability to incorporate executable code; code that can be used to run real experiments alongside the text and/or to produce interactive data visualisations. This is particularly important for sharing code and facilitating usability – providing a far more intuitive method of sharing code than a collection of Python scripts.

2.4.2 Starting a Jupyter Notebook Server

To use Jupyter notebooks, you will need to run the Jupyter notebook server. This can be done simply by executing the following:

$> jupyter notebook

It is recommended that you execute this from the directory you wish to work from, as this makes accessing existing project content and creating new content easy. Once the above command is executed, Jupyter should prompt your browser to open Jupyter's web User interface (UI), taking you to a page that looks like this:

You can then click new which will give the option of creating a new file - фото 2

You can then click “new,” which will give the option of creating a new file.

To create a new Python notebook simple click on the Python option in this - фото 3

To create a new Python notebook, simple click on the Python option (in this case, Python 3). You will then be presented with a new empty notebook.

The Jupyter notebook is connected to an iPython kernel which will allow you to - фото 4

The Jupyter notebook is connected to an iPython kernel, which will allow you to execute Python code in code blocks, such as the block above. Once you have written the code you would like to execute, simply click “run” in the Jupyter UI, or hit shift + enter on your keyboard to execute the cell. Jupyter also has another type of block – markdown blocks – which we will explore in the next section.

2.4.3 Adding Markdown to Notebooks

Markdown helps to add structure to documents and improve readability. As with typical markdown, you can easily specify headings and subheadings, as demonstrated in the following example:

# Heading 1 ## Heading 2 ### Heading 3

This code produces the following:

You can also embolden or italicise your text Here is an example of - фото 5

You can also embolden or italicise your text:

**Here is an example of emboldening** and *italicization*. Bullet points or numbered lists can also easily be used Here are some - фото 6

Bullet points or numbered lists can also easily be used:

* Here are * some bullet points 1. Here is 2. a list 1. and sublist Markdown in Jupyter notebooks also allows you to drop in nonexecutable code - фото 7

Markdown in Jupyter notebooks also allows you to drop in non‐executable code, in cases where code is being used illustratively, rather than being intended for execution. This is done using backticks:

`code = example` As well as being able to incorporate illustrative code the markdown also makes - фото 8

As well as being able to incorporate illustrative code, the markdown also makes it very easy to incorporate mathematical symbols and equations, as it supports LaTeX:

$y = \sum:{i=0}^{10}{x^i}$ 244 A Simple Plotting Example Plotting in Jupyter notebooks is an easy and - фото 9

2.4.4 A Simple Plotting Example

Plotting in Jupyter notebooks is an easy and powerful way to visualise data and interact with the visualisations. Below we show a simple plotting example:

Note the matplotlib inline line in the above code This will produce an - фото 10

Note the “%matplotlib inline” line in the above code. This will produce an in‐line plot within the notebook, as follows:

But Jupyter also provides tools for creating interactive plots This can be - фото 11

But Jupyter also provides tools for creating interactive plots. This can be achieved by replacing the “%matplotlib inline” instruction to “%matplotlib notebook,” producing a plot as follows:

This interactive plot allows the user to easily pan zoom and download the - фото 12

This interactive plot allows the user to easily pan, zoom, and download the plot.

2.4.5 Summary

In this section, we have seen how Jupyter notebooks can be used to create dynamic documents with embedded code. These notebooks facilitate intuitive knowledge transfer, helping you to convey complex scientific and mathematical concepts with the aid of executable code and interactive visualisations. For more information, and to see further examples of what can be achieved with Jupyter notebooks, please visit the Jupyter website at: jupyter.org

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Deep Learning for Physical Scientists»

Представляем Вашему вниманию похожие книги на «Deep Learning for Physical Scientists» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Deep Learning for Physical Scientists»

Обсуждение, отзывы о книге «Deep Learning for Physical Scientists» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x