Edward O. Pyzer-Knapp - Deep Learning for Physical Scientists

Здесь есть возможность читать онлайн «Edward O. Pyzer-Knapp - Deep Learning for Physical Scientists» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Deep Learning for Physical Scientists: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Deep Learning for Physical Scientists»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover the power of machine learning in the physical sciences with this one-stop resource from a leading voice in the field  Deep Learning for Physical Scientists: Accelerating Research with Machine Learning Designed to teach researchers to think in useful new ways about how to achieve results in their research, the book provides scientists with new avenues to attack problems and avoid common pitfalls and problems. Practical case studies and problems are presented, giving readers an opportunity to put what they have learned into practice, with exemplar coding approaches provided to assist the reader. 
From modelling basics to feed-forward networks, the book offers a broad cross-section of machine learning techniques to improve physical science research. Readers will also enjoy: 
A thorough introduction to the basic classification and regression with perceptrons An exploration of training algorithms, including back propagation and stochastic gradient descent and the parallelization of training An examination of multi-layer perceptrons for learning from descriptors and de-noising data Discussions of recurrent neural networks for learning from sequences and convolutional neural networks for learning from images A treatment of Bayesian optimization for tuning deep learning architectures Perfect for academic and industrial research professionals in the physical sciences, 
 will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access. 
Perfect for academic and industrial research professionals in the physical sciences, Deep Learning for Physical Scientists: Accelerating Research with Machine Learning will also earn a place in the libraries of industrial researchers who have access to large amounts of data but have yet to learn the techniques to fully exploit that access.  This book introduces the reader to the transformative techniques involved in deep learning. A range of methodologies are addressed including: •Basic classification and regression with perceptrons •Training

Deep Learning for Physical Scientists — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Deep Learning for Physical Scientists», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

147 146

148 147

149 148

150 149

151 150

152 151

153 152

154 153

155 154

156 155

157 156

158 157

159 158

160 159

161 160

162 161

163 162

164 163

165 164

166 165

167 167

168 168

169 169

170 170

171 171

172 172

173 173

174 174

175 175

176 176

177 177

178 178

179 179

180 180

181 181

182 182

183 183

184 184

185 185

186 186

187 187

188 188

189 189

190 190

191 191

192 192

193 193

194 194

195 195

196 196

197 197

Deep Learning for Physical Scientists

Accelerating Research with Machine Learning

Edward O. Pyzer‐Knapp

IBM Research UK

Data Centric Cognitive Systems

Daresbury Laboratory

Warrington

UK

Matthew Benatan

IBM Research UK

Data Centric Cognitive Systems

Daresbury Laboratory

Warrington

UK

This edition first published 2022 2022 John Wiley Sons Ltd All rights - фото 1

This edition first published 2022

© 2022 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Edward O. Pyzer-Knapp and Matthew Benatan to be identified as the authors of this work has been asserted in accordance with law.

Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at ww.wiley.com.

Library of Congress Cataloging‐in‐Publication Data

Names: Pyzer-Knapp, Edward O., author. | Benatan, Matthew, author.

Title: Deep learning for physical scientists : accelerating research with machine learning / Edward O. Pyzer-Knapp, IBM Research UK, Data Centric Cognitive Systems, Daresbury Laboratory, Warrington UK, Matthew Benatan, IBM Research UK, Data Centric Cognitive Systems, Daresbury Laboratory, Warrington UK.

Description: Hoboken, NJ : Wiley, 2022. | Includes index.

Identifiers: LCCN 2021036996 (print) | LCCN 2021036997 (ebook) | ISBN 9781119408338 (hardback) | ISBN 9781119408321 (adobe pdf) | ISBN 9781119408352 (epub)

Subjects: LCSH: Physical sciences–Data processing. | Machine learning.

Classification: LCC Q183.9 .P99 2022 (print) | LCC Q183.9 (ebook) | DDC 500.20285/631–dc23

LC record available at https://lccn.loc.gov/2021036996LC ebook record available at https://lccn.loc.gov/2021036997

Cover Design: Wiley

Cover Image: © Anatolyi Deryenko/Alamy Stock Photo

About the Authors

Dr Edward O. Pyzer‐Knappis the worldwide lead for AI Enriched Modelling and Simulation at IBM Research. Previously, he obtained his PhD from the University of Cambridge using state of the art computational techniques to accelerate materials design then moving to Harvard where he was in charge of the day‐to‐day running of the Harvard Clean Energy Project ‐ a collaboration with IBM which combined massive distributed computing, quantum‐mechanical simulations, and machine‐learning to accelerate discovery of the next generation of organic photovoltaic materials. He is also the Visiting Professor of Industrially Applied AI at the University of Liverpool, and the Editor in Chief for Applied AI Letters, a journal with a focus on real‐world application and validation of AI.

Dr Matt Benatanreceived his PhD in Audio‐Visual Speech Processing from the University of Leeds, after which he went on to pursue a career in AI research within industry. His work to date has involved the research and development of AI techniques for a broad variety of domains, from applications in audio processing through to materials discovery. His research interests include Computer Vision, Signal Processing, Bayesian Optimization, and Scalable Bayesian Inference.

Acknowledgements

EPK: This book would not have been possible without the support of my wonderful wife, Imogen.

MB: Thanks to my wife Rebecca and parents Dan & Debby for their continuing support.

1 Prefix – Learning to “Think Deep”

Paradigm shifts in the way we do science occur when the stars align. For this to occur we must have three key ingredients:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Deep Learning for Physical Scientists»

Представляем Вашему вниманию похожие книги на «Deep Learning for Physical Scientists» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Deep Learning for Physical Scientists»

Обсуждение, отзывы о книге «Deep Learning for Physical Scientists» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x