Alessandro Massaro - Electronics in Advanced Research Industries

Здесь есть возможность читать онлайн «Alessandro Massaro - Electronics in Advanced Research Industries» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Electronics in Advanced Research Industries: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Electronics in Advanced Research Industries»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A one-of-a-kind examination of the latest developments in machine control 
 
In 
, accomplished electronics researcher and engineer Alessandro Massaro delivers a comprehensive exploration of the latest ways in which people have achieved machine control, including automated vision technologies, advanced electronic and micro-nano sensors, advanced robotics, and more. 
The book is composed of nine chapters, each containing examples and diagrams designed to assist the reader in applying the concepts discussed within to common issues and problems in the real-world. Combining electronics and mechatronics to show how they can each be implemented in production line systems, the book presents insightful new ways to use artificial intelligence in production line machines. The author explains how facilities can upgrade their systems to an Industry 5.0 environment. 
Electronics in Advanced Research Industries: Industry 4.0 to Industry 5.0 Advances A thorough introduction to the state-of-the-art in a variety of technological areas, including flexible technologies, scientific approaches, and intelligent automatic systems Comprehensive explorations of information technology infrastructures that support Industry 5.0 facilities, including production process simulation Practical discussions of human-machine interfaces, including mechatronic machine interface architectures integrating sensor systems and machine-to-machine (M2M) interfaces In-depth examinations of internet of things (IoT) solutions in industry, including cloud computing IoT Perfect for professionals working in electrical industry sectors in manufacturing, production line manufacturers, engineers, and members of R&D industry teams, 
 will also earn a place in libraries of technicians working in the process industry.

Electronics in Advanced Research Industries — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Electronics in Advanced Research Industries», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The pseudocode highlights that there are two mechanisms in the ANN network: the forward propagation of the estimation of the predicted output y , and the back propagation of the error function as sketched in Figure 1.18b. The output is estimated by considering the summation of the input contributions and is defined as:

(1.10) Electronics in Advanced Research Industries - изображение 30

where f is the activation function. Some examples of activation functions are plotted in Figure 1.19, where the analytical forms are:

(1.11) 112 113 114 - фото 31

(1.12) 113 114 115 - фото 32

(1.13) 114 115 - фото 33

(1.14) 115 Figure 119 Basic mathematica - фото 34

(1.15) Figure 119 Basic mathematical functions defining activation functions Other - фото 35

Figure 119 Basic mathematical functions defining activation functions Other - фото 36

Figure 1.19 Basic mathematical functions defining activation functions.

Other mathematical activation functions are the following [68]:

(1.16) 117 118 119 - фото 37

(1.17) 118 119 120 - фото 38

(1.18) 119 120 121 - фото 39

(1.19) 120 121 122 - фото 40

(1.20) 121 122 123 - фото 41

(1.21) 122 123 124 - фото 42

(1.22) 123 124 125 - фото 43

(1.23) 124 125 126 - фото 44

(1.24) 125 126 127 - фото 45

(1.25) 126 127 128 - фото 46

(1.26) 127 128 129 - фото 47

(1.27) 128 129 130 - фото 48

(1.28) 129 130 131 - фото 49

(1.29) 130 131 The activation function - фото 50

(1.30) 131 The activation function represents a basic research element of - фото 51

(1.31) The activation function represents a basic research element of considerable - фото 52

The activation function represents a basic research element of considerable importance. The correct choice of the activation function defines the best implementation of the logic defining the outputs. The analytical model must therefore be appropriately weighted by the various variables and must be “calibrated” for the specific case study. Another important aspect is the ability of the activation function to self‐adapt [69] to the specific case study providing a certain flexibility [70]. Of particular interest is the possibility to consider a combination of activation functions (activation ensemble [71]). The approach to follow is therefore to define a flexible and modular activation function as is the case for the adaptive spline activation function [72].

Concerning the training models, the full dataset of the neural network is divided into a training set, validation set, and test set ( Figure 1.20). In particular, the function of the training dataset is to fit the model; the validation set is a small partition of the full dataset able to previously estimate prediction error of the selected model; finally, the test set is used for testing the final model. A correct choice of the three parts depends on the SNR of the full dataset.

Figure 120 Supervised artificial network model partitioning of the available - фото 53

Figure 1.20 Supervised artificial network model: partitioning of the available dataset into training set, validation set, and test set.

The intelligent algorithms which constitute the core of the Industry 5.0 system, are classified in Figure 1.21. The generic algorithms of data analysis, including statistical data processing and classification roles, are classified as computer science and data mining algorithms; other high‐level algorithms are included in AI algorithms. The main function of the engine processor enables the managing of big data and of data processing. As previously mentioned, a basic concept of algorithm classification is in the learning supervision: in a supervised learning model, the algorithm learns on a pre‐selected dataset with specific labeled attributes filtered by the user; in an unsupervised model all the attributes are unlabeled, and the algorithm tries to extract features and patterns without a guideline. The supervised algorithms mainly support the user to find a solution for a specific problem such as finding a specific defect category or a specific failure system.

Figure 121 Algorithm classification and Industry 50 facilities A simple way - фото 54

Figure 1.21 Algorithm classification and Industry 5.0 facilities.

A simple way to analyze the data trend is regression analysis, where a linear approach is enough to model a relationship between dependent variables and independent ones (see plot example of Figure 1.22a). Typically, line regression provides information about a linear trend prediction. The classification is based on the concept of data categorization: data are classified by considering a generic classification pattern curve defined as shown in Figure 1.22b, where all data above and below the curve appertain to a particular class. Data classification is often used to solve supervised learning models. Finally, data clustering is based on the grouping of datasets forming clusters having similar features. Data clustering is commonly used to solve unsupervised learning models. All analysis can be performed by analyzing a multidimensional domain by taking into account the variable time, which is fundamental for forecasting approaches.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Electronics in Advanced Research Industries»

Представляем Вашему вниманию похожие книги на «Electronics in Advanced Research Industries» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Electronics in Advanced Research Industries»

Обсуждение, отзывы о книге «Electronics in Advanced Research Industries» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x