Wetland Carbon and Environmental Management

Здесь есть возможность читать онлайн «Wetland Carbon and Environmental Management» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Wetland Carbon and Environmental Management: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Wetland Carbon and Environmental Management»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Explores how the management of wetlands can influence carbon storage and fluxes Wetlands are vital natural assets, including their ability to take-up atmospheric carbon and restrict subsequent carbon loss to facilitate long-term storage. They can be deliberately managed to provide a natural solution to mitigate climate change, as well as to help offset direct losses of wetlands from various land-use changes and natural drivers.
Wetland Carbon and Environmental Management Volume highlights include:
Overview of carbon storage in the landscape Introduction to wetland management practices Comparisons of natural, managed, and converted wetlands Impact of wetland management on carbon storage or loss Techniques for scientific assessment of wetland carbon processes Case studies covering tropical, coastal, inland, and northern wetlands Primer for carbon offset trading programs and how wetlands might contribute The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Wetland Carbon and Environmental Management — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Wetland Carbon and Environmental Management», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

244 Kroeger, K. D., Crooks, S., Moseman‐Valtierra, S., & Tang, J. (2017). Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention. Scientific Reports, 7(1), 11914. https://doi.org/10.1038/s41598‐017‐12138‐4

245 Kuehn, K. A., Lemke, M. J., Suberkropp, K., & Wetzel, R. G. (2000). Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnology and Oceanography, 45(4), 862–870. https://doi.org/10.4319/lo.2000.45.4.0862

246 Küsel, K., Dorsch, T., Acker, G., & Stackebrandt, E. (1999). Microbial reduction of Fe(III) in acidic sediments: Isolation of Acidiphilium cryptum JF‐5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Applied and Environmental Microbiology, 65(8), 3633–3640. https://doi.org/10.1128/aem.65.8.3633‐3640.1999

247 Kuwata, M., Kai, F. M., Yang, L., & Itoh, M. (2016). Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire. Journal of Geophysical Research: Atmospheres, 122, 1281–1292. https://doi.org/10.1002/2016JD025897

248 Laanbroek, H. J. (2010). Methane emission from natural wetlands: Interplay between emergent macrophytes and soil microbial processes. A mini‐review. Annals of Botany, 105(1), 141–153. https://doi.org/10.1093/aob/mcp201

249 LaCroix, R., Tfaily, M., McCreight, M., Jones, M. E., Spokas, L., & Keiluweit, M. (2018). Shifting mineral and redox controls on carbon cycling in seasonally flooded soils. Biogeosciences Discussions, 1–36. https://doi.org/10.5194/bg‐2018‐432

250 Lai, D. Y. F. (2009). Methane dynamics in northern peatlands: A review. Pedosphere, 19(4), 409–421. https://doi.org/10.1016/S1002‐0160(09)00003‐4

251 Laiho, R. (2006). Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, 38(8), 2011–2024. https://doi.org/10.1016/j.soilbio.2006.02.017

252 Lalonde, K., Mucci, A., Ouellet, A., & Gélinas, Y. (2012). Preservation of organic matter in sediments promoted by iron. Nature, 483(7388), 198–200. https://doi.org/10.1038/nature10855

253 Landre, A. L., Watmough, S. A., & Dillon, P. J. (2009). The effects of dissolved organic carbon, acidity and seasonality on metal geochemistry within a forested catchment on the Precambrian Shield, central Ontario, Canada. Biogeochemistry, 93(3), 271–289. https://doi.org/10.1007/s10533‐009‐9305‐0

254 Langley, J. A., & Megonigal, J. P. (2010). Ecosystem response to elevated CO2 levels limited by nitrogen‐induced plant species shift. Nature, 466(7302), 96–99. https://doi.org/10.1038/nature09176

255 Langley, J. A., Mckee, K. L., Cahoon, D. R., Cherry, J. A., & Megonigal, J. P. (2009). Elevated CO2 stimulates marsh elevation gain, counterbalancing sea‐level rise. Proceedings of the National Academy of Sciences of the United States of America, 106(15), 6182–6186. https://doi.org/10.1073/pnas.0807695106

256 LaRowe, D. E., & Van Cappellen, P. (2011). Degradation of natural organic matter: A thermodynamic analysis. Geochimica et Cosmochimica Acta, 75(8), 2030–2042. https://doi.org/10.1016/j.gca.2011.01.020

257 LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoarfrost, A., Lang, S. Q., et al. (2020). The fate of organic carbon in marine sediments ‐ New insights from recent data and analysis. Earth‐Science Reviews, 204(August 2019), 103146. https://doi.org/10.1016/j.earscirev.2020.103146

258 Lee, A. A., & Bukaveckas, P. A. (2002). Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities. Aquatic Botany, 74(4), 273–285. https://doi.org/10.1016/S0304‐3770(02)00128‐6

259 Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60–68. https://doi.org/10.1038/nature16069

260 Leifeld, J., Steffens, M., & Galego‐Sala, A. (2012). Sensitivity of peatland carbon loss to organic matter quality. Geophysical Research Letters, 39(14), 1–6. https://doi.org/10.1029/2012GL051856

261 Lenhart, K., Bunge, M., Ratering, S., Neu, T. R., Schüttmann, I., Greule, M., et al. (2012). Evidence for methane production by saprotrophic fungi. Nature Communications, 3. https://doi.org/10.1038/ncomms2049

262 Liu, S., Hu, R., Zhao, J., Brüggemann, N., Bol, R., Cai, G., et al. (2014). Flooding effects on soil phenol oxidase activity and phenol release during rice straw decomposition. Journal of Plant Nutrition and Soil Science, 177(4), 541–547. https://doi.org/10.1002/jpln.201300356

263 Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., et al. (2014). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24(9), 1028–1042. https://doi.org/10.1177/0959683614538073

264 Luo, M., Liu, Y., Huang, J., Xiao, L., Zhu, W., Duan, X., & Tong, C. (2018). Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: A rhizobox study. Plant and Soil, 433(1–2), 83–100. https://doi.org/10.1007/s11104‐018‐3827‐y

265 Luo, M., Zhai, Z., Ye, R., Xing, R., Huang, J., & Tong, C. (2020). Carbon mineralization in tidal freshwater marsh soils at the intersection of low‐level saltwater intrusion and ferric iron loading. Catena, 193(January), 104644. https://doi.org/10.1016/j.catena.2020.104644

266 Ma, Z., Melville, D. S., Liu, J., Chen, Y., Yang, H., Ren, W., et al. (2014). Rethinking China’s new great wall. Science, 346(6212), 912–914. https://doi.org/10.1126/science.1257258

267 MacCarthy, R., & Davey, C. B. (1976). Nutritional problems of Pinus taeda L. (loblolly pine) growing on pocosin soil. Soil Science Society of America Journal, 40(4), 582–585. https://doi.org/10.2136/sssaj1976.03615995004000040034x

268 MacDonald, J. A., Fowler, D., Hargreaves, K. J., Skiba, U., Leith, I. D., & Murray, M. B. (1998). Methane emission rates from a northern wetland: Response to temperature, water table and transport. Atmospheric Environment, 32(19), 3219–3227. https://doi.org/10.1016/S1352‐2310(97)00464‐0

269 Mahieu, N., Olk, D. C., & Randall, E. W. (2002). Multinuclear magnetic resonance analysis of two humic acid fractions from lowland rice soils. Journal of Environmental Quality, 31(2), 421–430. https://doi.org/10.2134/jeq2002.4210

270 Malhotra, A., Brice, D., Childs, J., Graham, J., Hobbie, E., Vander Stel, H., et al. (2020). Peatland warming strongly increases fine‐root growth. Proceedings of the National Academy of Sciences, 117(30), 202003361. https://doi.org/10.1073/pnas.2003361117

271 Männistö, E., Korrensalo, A., Alekseychik, P., Mammarella, I., Peltola, O., Vesala, T., & Tuittila, E. S. (2019). Multi‐year methane ebullition measurements from water and bare peat surfaces of a patterned boreal bog. Biogeosciences, 16(11), 2409–2421. https://doi.org/10.5194/bg‐16‐2409‐2019

272 Marlier, M. E., DeFries, R. S., Kim, P. S., Koplitz, S. N., Jacob, D. J., Mickley, L. J., & Myers, S. S. (2015). Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia. Environmental Research Letters, 10(8), 85005. https://doi.org/10.1088/1748‐9326/10/8/085005

273 Marsh, A. S., Rasse, D. P., Drake, B. G., & Megonigal, J. P. (2005). Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries, 28(5), 694–704. https://doi.org/10.1007/BF02732908

274 Masiello, C. A., Gallagher, M. E., Randerson, J. T., Deco, R. M., & Chadwick, O. A. (2008). Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. Journal of Geophysical Research: Biogeosciences, 113(3), 1–9. https://doi.org/10.1029/2007JG000534

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Wetland Carbon and Environmental Management»

Представляем Вашему вниманию похожие книги на «Wetland Carbon and Environmental Management» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Wetland Carbon and Environmental Management»

Обсуждение, отзывы о книге «Wetland Carbon and Environmental Management» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x