Shaping Future 6G Networks

Здесь есть возможность читать онлайн «Shaping Future 6G Networks» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Shaping Future 6G Networks: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Shaping Future 6G Networks»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Shaping Future 6G Networks
Discover the societal and technology drivers contributing to build the next generation of wireless telecommunication networks Shaping Future 6G Networks: Needs, Impacts, and Technologies
Shaping Future 6G Networks

Shaping Future 6G Networks — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Shaping Future 6G Networks», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6G networks and services are expected to play a central role as the backbone of our future societies by tightly integrating virtual and physical spaces. Japanese governmental agencies have forged the term Society 5.0 to designate this future society that Japan should aspire to be. Following the hunting society (Society 1.0), agricultural society (Society 2.0), industrial society (Society 3.0), and information society (Society 4.0), Society 5.0 should achieve a high degree of convergence between cyberspace (virtual space) and physical space (real space). In this future Society 5.0, huge amounts of information from sensors in physical space are accumulated in cyberspace and analyzed by artificial intelligence (AI) to provide intuitive and near‐real‐time feedback to humans in physical space. This vision first drawn by science fiction authors in the early 1980s is about to become a reality. “Cyberspace… Data abstracted from the banks of every computer in the human system. Unthinkable complexity.” wrote William Gibson (who coined the term of cyberspace) in his 1984 novel Neuromancer .

The recent COVID‐19 misfortune might appear as a new step toward this Society 5.0, as we have re‐recognized the need for enhancing and upgrading information communication infrastructure to ensure the continuity of our social activities, as well as the growing blurring between virtual and real relationships. On this road, it is essential not only to promote research and development of technology but also to consider the global environmental impacts (such as carbon neutral and green recovery), the social inclusiveness so that no one will be left behind, and the ethics and social acceptability of these forthcoming technologies.

This wish for a future better and enhanced society shall be and remain the underlying foundation for designing future 6G networks. It should bond all the stakeholders engaged in research and development of next‐generation cyber infrastructure, 6G mobile network systems, to globally unite forces to define new requirements, use cases, and fundamental theories and technologies that must be realized for the next decade. These researches are also a way to progress for accomplishing the 2030 Agenda for Sustainable Development adopted by the United Nations in 2015, where one of the sustainable development goals is about building resilient infrastructure, promote inclusive and sustainable industrialization, and foster innovation.

Although it is just the very beginning of our journey for developing 6G mobile networking, we can assume that the next‐generation cyber infrastructure will bring us communications features very close to human capability, such as ultralow latency, ultra‐high capacity, ultra‐large number of connected devices, ultralow power communication, stringent security and privacy, autonomy enabled by machine learning and AI, and ultra‐coverage and extensibility including non‐terrestrial networks, underwater communication, etc.

This journey will not only be driven by the telecom industry. Many countries have allocated frequency white space to private 5G usage and made open to non‐telecommunication companies so that they can operate their own customized 5G networks. We believe that this “democratization” (i.e. making something accessible to anyone) of 5G networks will open a door to new innovations coming from the civil society as well as from industrial players. 6G will thus be the opportunity to conciliate various types of innovations: grassroots innovations coming from local players with new use cases and ad hoc solutions, radio and core layer innovations coming from Telco players, and also real‐time software innovations coming from Internet player. Besides the regular migration path from 5G to 6G promoted by telecommunication operators and vendors, there is another evolution avenue possible, from private 5G to private 6G and then to public 6G because a lot more stakeholders may participate in the game of developing custom solutions tailored for their real use cases that may be eventually distilled and adopted as viable 6G technologies to be standardized.

Along with the editors, I hope that this book serves as a navigating compass in our endeavor for developing 6G infrastructure for the next decade, by providing the insights from internationally known distinguished experts.

Akihiro Nakao

The University of Tokyo, Japan

Acronyms

Abbreviation Explanation
3GPP2 3rd Generation Partnership Project 2
5G 5th Generation
5GAA 5G Automotive Association
5GC 5G Core
5G‐NTN 5G Non‐Terrestrial Network
6G 6th Generation
AD Anomaly Detection
AFL Agnostic Federated Learning
AI Artificial Intelligence
AIaaS AI‐as‐a‐Service
API Application Programming Interface
APS Angular Power Spectrum
APSM Adaptive Projected Subgradient Method
ARCEP Autorité de Régulation des Communications Électroniques et des Postes
ARIB Association of Radio Industries and Businesses
AS Autonomous System
ASIC Application‐Specific Integrated Circuit
ATIS Alliance for Telecommunications Industry Solutions
B2B Business‐to‐Business
B2C Business‐to‐Consumer
B5G Beyond 5G
BBUs Baseband Units
BGP Border Gateway Protocol
BN Boundary Nodes
BOM Business, Operation, and Management
BS Base Station
BSS Business Support System
BW Bandwidth
CAPEX Capital Expenses
CBRS Citizen Broadband Radio System
CCNx Content‐Centric Networking
CCSA China Communications Standards Association
CDMA Code Division Multiple Access
CeTI Centre for Tactile Internet with Human‐in‐the‐Loop
CFN Computer‐First Networking
C‐ITS Cooperative Intelligent Transport System
CN Core Network
COINRG Computing in the Network Research Group
COTS Commercial Off The Shelf
CP Control Platform
CPM Collective Perception Message
CPNP Connectivity Profile Negotiation Protocol
CPU Central Processing Unit
CR Common Randomness
C‐RAN Cloud‐RAN
CSAE China Society of Automotive Engineers
CS Channel Sounder
CSI Channel State Information
CSI Channel Side Information
CU Centralized Unit
CUPS Control User Plane Separation
D/A Digital to Analogue
DCAE Data Collection, Analytics, and Events
DC Data Center
DDoS Distributed Denial of Service
DetNet Deterministic Networking
DFG Deutsche Forschungsgemeinschaft
DI Deterministic Identification
DINRG Decentralized Internet Infrastructure
DMC Discrete Memoryless Channel
DNN Deep Neural Network
DoS Denial of Service
DPI Deep Packet Inspection
DRL Deep Reinforcement Learning
DSCP Differentiated Services Code Point
DU Distributed Unit
EE Energy Efficiency
EI Enrichment Information
eLSA Evolved License Shared Access
EM Electromagnetic
eMBB Enhanced Mobile Broadband
EROI Energy Return on Energy Injected
ETSI European Telecommunications Standards Institute
FD Full Duplex
FDM Frequency Division Multiplexing
FH Fronthaul
FL Federated Learning
FLOP Float Point Operation
FPGA Field‐Programmable Gate Array
FR2 Frequency Range 2
FSS Fixed Satellite Service
FSS Frequency Selective Surface
GDPR General Data Protection Regulation
GEO Geostationary Earth Orbit
gNB Next‐Generation NodeB
GPP General‐Purpose Platform
GPU Graphics Processing Unit
GSM Global System for Mobile Communication
GSMA GSM Association
GTP GPRS Tunnel Protocol
HAP High‐Altitude Platform
HD Half Duplex
HDFS Hadoop Distributed File System
HDS High Impedance Surface
HFT High‐Frequency Trading
HMD Head‐Mounted Device
HRV High‐Risk Vendor
HTS High Throughput Satellite
ICDT Information, Communication, and Data Technology
ICT Information and Communication Technology
IDF Identification with Feedback
IMT International Mobile Telecommunications
IoE Internet of Everything
IoT Internet of Things
IP Intellectual Property
IPFS Interplanetary File System
IRTF Internet Research Task Force
ISL Inter‐Satellite Link
ISTN Integrated Space and Terrestrial Network
IT Information Technology
ITU International Telecommunication Union
JCSS Joint Communication Sensor Systems
KPI Key Performance Indicator
K‐V Key Values
LEO Low Earth Orbit
LF Linux Foundation
LISP Locator/ID Separation Protocol
LPWAN Low‐Power Wide‐Area Network
LTE Long‐Term Evolution
M2M Machine‐to‐Machine
MAC Media Access Control
MAMOKO Molecular Communication
MC‐CDMA Multi‐Code CDMA
MCTS Monte Carlo Tree Search
MDA Mandate‐Driven Architecture
MDAS Management Data Analytics Service
MEC Mobile Edge Computing
MEO Medium Earth Orbit
mHealth Mobile Health
MIMO Multi‐Input Multi‐Output
MIoT Massive IoT
ML Machine Learning
M‐MIMO Massive MIMO
MMSE Minimum Mean Square Error
mMTC Massive Machine Type Communications
MSS Mobile Satellite Service
NAS Non‐Access Stratum
NAT Network Address Translator
NCSC National Cyber Security Centre
NDN Named Data Networking
NF Network Function
NFV Network Function Virtualization
NGP Next‐Generation Protocols
NIA Network Index Address
NIC Network Interface Controller
NIN Non‐IP Networking
NN Neural Network
NOMA Non‐Orthogonal Multiple Access
NRI Non‐Randomized Identification
NRT Non‐Real‐Time
NRT‐RIC Non‐Real‐Time RAN Intelligent Controller
NSF National Science Foundation
NWDA Network Data Analytic
NWDAF Network Data Analytics Function
OAM Operation and Management
OBO Output Back‐off
OBP On‐Board Processor
OFDMA Orthogonal Frequency Division Multiple Access
OPEX Operational Expenditure
O‐RAN Open Radio Access Network
OSC O‐RAN Software Community
OT Operation Technology
OTF Open Testing Framework
OTIC Open Testing and Integration Center
OTN Optical Transport Network
P4 Programming Protocol‐Independent Packet Processors
PAPR Peak‐to‐Average Power Ratio
PCE Path Communication Element
PCF Policy Control Function
PE Provider Edge
PFNM Probabilistic Federated Neural Matching
PHY Physical
PISA Protocol‐Independent Switch Architecture
PLC Programmable Logic Control
PN Pseudo‐Noise
PS Public Safety
PSCE Public Safety Communication Europe Forum
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RANDA Radio Access Network Big Data Analysis Network Architecture
rApp Radio Application
RCA Root Cause Analysis
ReLU Rectified Linear Unit
RI Randomized Identification
RIC Radio Intelligent Controller
RIC RAN Intelligent Controller
RIS Reconfigurable Intelligent Surface
RKHS Reproducing Kernel Hilbert Spaces
RLNC Random Linear Network Coding
RRC Radio Resource Control
RT Real‐Time
SA System Aspect
SBA Service‐Based Architecture
SBI Service‐Based Interface
SDL Shared Data Layer
SDN Software‐Defined Networking
SDO Standard Development Organization
SDR Software‐Defined Radio
SE Spectrum Efficiency
SFC Service Function Chaining
SFP Service Function Path
SGD Stochastic Gradient Descent
SLA Service‐Level Agreement
SLA Service Layer Agreement
SNR Signal‐to‐Noise Ratio
SOM Service Order Management
SRv6 Segment Routing Based on IPv6
TCO Total Cost of Ownership
TDM Time Division Multiplex
TDMA Time Division Multiple Access
TIP Telecom Infrastructure Project
TSDSI Telecommunications Standards Development Society
TSN Time‐Sensitive Networking
TTA Telecommunication Technology Association
TTC Telecommunication Technology Committee
TTI Transmission Time Interval
UAV Unmanned Aerial Vehicle
UDN Ultradense Network
UMTS Universal Mobile Telecommunication System
UN IPCC United Nations Intergovernmental Panel on Climate Change
UP User Plane
UPF User Plane Function
URLLC Ultrareliable Low‐Latency Communication
V2X Vehicle to Everything
VHTS Very High Throughput Satellites
VM Virtual Machines
VNA Vector Network Analyzers
VNF Virtual Network Function
VPN Virtual Private Network
VRU Vulnerable Road User
VSAT Very Small Aperture Terminals
WBD Wireless Big Data
WWW World Wide Web
YOY Year over Year
ZB Zettabytes
ZSM Zero‐Touch Network and Service Management

1 Toward 6G – Collecting the Research Visions

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Shaping Future 6G Networks»

Представляем Вашему вниманию похожие книги на «Shaping Future 6G Networks» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Bruce Sterling
Отзывы о книге «Shaping Future 6G Networks»

Обсуждение, отзывы о книге «Shaping Future 6G Networks» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x