James G. Speight - Encyclopedia of Renewable Energy
Здесь есть возможность читать онлайн «James G. Speight - Encyclopedia of Renewable Energy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Encyclopedia of Renewable Energy
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
Encyclopedia of Renewable Energy: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Encyclopedia of Renewable Energy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Written by a highly respected engineer and prolific author in the energy sector, this is the single most comprehensive, thorough, and up-to-date reference work on renewable energy.
Encyclopedia of Renewable Energy: Audience
Encyclopedia of Renewable Energy — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Encyclopedia of Renewable Energy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Up to a 10% blend level, the performance of bioethanol-blended petrol is similar to ordinary gasoline At higher levels however, some engines may begin to exhibit problems, for example, stumbling under slight acceleration. The fuel also has more aggressive properties at higher concentrations of bioethanol which increases the possibility of deterioration of some components. Gasoline must be volatile enough to move from the carburetor or injectors into the cylinders and to vaporize prior to combustion. However, it can’t be so volatile that it vaporizes and boils in the injectors, carburetor, fuel lines, or fuel pump, which could prevent it from being metered correctly. Also, if gasoline is too volatile, moiré evaporates into the air adding to environmental problems. There are a number of volatility specifications to ensure suppliers get this balancing act right. Adding bioethanol to gasoline as low-level blends increases the volatility of the blended fuel.
The Engine Fuel Specifications Regulations specify volatility measures for bioethanol-blended gasoline and gasoline. The limits for blends are similar to those for gasoline so as to ensure no changes in vehicles are required. Bioethanol introduces more oxygen into the fuel. In vehicles with simple fuel metering systems such as carburetors, this causes the mixture to become leaner which is advantageous for fuel economy and for lowering some types of exhaust emissions. However, it may cause some engines to stumble if they are already tuned reasonably lean. If a vehicle stumbles on bioethanol-blended gasoline, re-tuning should solve the problem. A vehicle tuned correctly for use on ordinary gasoline would normally not exhibit problems when using bioethanol blends.
The factors of availability, price, and independence of manufacturer, health benefits, engine improvements, and political implications must all be carefully weighed and assessed, before educated decisions can be made by the powers that be. It is hoped however, that despite some of the obvious setbacks of biofuel production, that it is still viewed as a step in the right direction, and emerging technologies and innovative ideas will encourage improvements in what is undoubtedly, the future of fuel.
Biofuels – Third Generation
Third-generation biofuels (also called advanced biofuels) seek to improve the feedstock, rather than improving the fuel-making process.
Designing oilier crops, for example, could greatly boost yield. Scientists have designed poplar trees with lower lignin content to make them easier to process. Researchers have already mapped the genomes of sorghum and corn, which may allow genetic agronomists to tweak the genes controlling oil production.
Algae fuel, also called oilgae or third-generation biofuel, is a biofuel from algae, which are low-input, high-yield feedstocks that can produce biofuels. Algae can produce up to 30 times more energy per acre than land crops such as soybeans. With the higher prices of fossil fuels, there is much interest in algaculture (farming algae).
One advantage of many biofuels over most other fuel types is that they are biodegradable, and so relatively harmless to the environment if spilled. Algae fuel still has its difficulties though, for instance, to produce algae fuels, it must be mixed uniformly, which, if done by agitation, could affect biomass growth. Algae, such as Botryococcus braunii and Chlorella vulgaris , are relatively easy to grow, but the algal oil is difficult to extract. Macroalgae (seaweed) also have a great potential for bioethanol and biogas production.
Recently, the term fourth-generation biofuels has arisen and is coming into popular use. Fourth-generation technology combines genetically optimized feedstocks, which are designed to capture large amounts of carbon, with genomically-synthesized microbes, which are made to efficiently make fuels. The key to the process is the capture and sequester of carbon dioxide, a process that renders fourth-generation biofuels a carbon negative source of fuel. However, the weak link is carbon capture and sequestration technology, which continues to challenge industry.
See also: Biofuels – First Generation, Biofuels – Second Generation
Biofuels – Use
Biomass has the potential to supply a considerable portion of the energy needs of the world, but the conversion of biomass to energy is carried out in an unsustainable manner that there are many negative environmental consequences. If biomass is to supply a greater proportion of the energy needs in the future, the challenge will be to produce biomass and to convert and use it without harming the natural environment. Technologies and processes exist which, if used correctly, make biomass-based fuels less harmful to the environment than fossil fuels. Applying these technologies and processes on a site-specific basis in order to minimize negative environmental impacts is a prerequisite for sustainable use of biomass energy in the future.
Biodiesel and bioethanol are widely used in automobiles and freight vehicles. For example, in Germany, most diesel fuel on sale at gas stations contains a few percent biodiesel, and many gas stations also sell 100% biodiesel. Some supermarket chains in the UK have switched to running their freight fleets on 50% biodiesel, and often include biofuels in the vehicle fuels they sell to consumers, and an increasing number of service stations are selling biodiesel blends (typically with 5% biodiesel).
In Europe, research is being undertaken into the use of biodiesel as domestic heating oil. A blend of 20% biodiesel with 80% kerosene (B20) has been tested successfully to power modern high efficiency condensing oil boilers. Boilers needed a preheat burner to prevent nozzle blockages and maintain clean combustion. Blends with a higher proportion of biodiesel were found to be less satisfactory, owing to the greater viscosity of biodiesel than conventional fuels when stored in fuel tanks outside the building at typical (non-arctic) winter temperatures.
See also: Biodiesel, Biofuels, Ethanol, Methanol.
Biogas
Biogas, which is also known as biomethane, landfill gas, swamp gas, and digester gas, is a collection of gases (largely methane and carbon dioxide) produced by the anaerobic degradation of biomass (non-fossil organic matter) by various bacteria ( Table B-11).
Thus, biogas is a combustible gas derived from decomposing biological waste under anaerobic conditions. Biogas typically refers to a biofuel gas produced by anaerobic digestion or fermentation of organic matter including manure, sewage sludge, municipal solid waste, biodegradable waste, or any other biodegradable feedstock, under anaerobic conditions. Depending on where it is produced, biogas is also called swamp gas, marsh gas, landfill gas, and digester gas ( Table B-9).
Table B-11The composition of gas from various carbonaceous fuels.
Composition: | Digester gas | Landfill gas | Sewage gas | Agri-waste |
---|---|---|---|---|
Carbon Dioxide (CO 2) | 25-45% | 35-50% | 30-40% | 25-45% |
Methane (CH 4) | 45-65% | 40-45% | 55-65% | 55-75% |
Nitrogen (N 2) | 2-5% | 0-20% | 2-10% | 0-10% |
The primary component of biogas is methane gas, which comprises 50-90% by volume of biogas. Usually, biogas is 50% to 80% methane and 20% to 50% carbon dioxide, with the remainder trace gases such as hydrogen, carbon monoxide, and nitrogen. Methane is also the primary component of natural gas, but natural gas is normally recovered with more than 70% methane, along with other hydrocarbons (such as butane and propane) and traces of carbon dioxide and other chemicals. Natural gas is processed so that it is almost entirely, 98%, methane. Biogas is produced in a variety of low-oxygen natural environments with degradable organic matter, including swamps, marshes, landfills, agricultural and other waste (sewage sludge, manure, waste lagoons), aquatic sediments, wet soils, buried organic matter, as well as via enteric fermentation in some animal digestive tracts, notably in cattle.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Encyclopedia of Renewable Energy»
Представляем Вашему вниманию похожие книги на «Encyclopedia of Renewable Energy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Encyclopedia of Renewable Energy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.