James G. Speight - Encyclopedia of Renewable Energy

Здесь есть возможность читать онлайн «James G. Speight - Encyclopedia of Renewable Energy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Encyclopedia of Renewable Energy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Encyclopedia of Renewable Energy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ENCYCLOPEDIA OF RENEWABLE ENERGY
Written by a highly respected engineer and prolific author in the energy sector, this is the single most comprehensive, thorough, and up-to-date reference work on renewable energy.
Encyclopedia of Renewable Energy: Audience

Encyclopedia of Renewable Energy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Encyclopedia of Renewable Energy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Biomass feedstocks generally produce a biogas rich in methane. This medium-to-high Btu (heat content) gas can, in some instances, be upgraded to a substitute natural gas (SNG). However, depending on the feedstock, non-negligible amounts of sulfur are also produced ( Table B-13).

Table B-13Comparison of different biogas feedstocks.

Feedstock Sulfur content* Product sulfur*
Liquid and solid manure 300-500 0.5
Organic waste 100-300 0.3
Wood chips 300-1000 0.3
Sewage sludge 300-500 0.6
*mg/m 3

See also: Anaerobic Digestion – Gas Production.

Biological Hydrogen Production

Biological hydrogen (biohydrogen) is hydrogen produced biologically. The main reactions involve fermentation of sugar derivatives, such as glucose:

A related reaction produces formic acid leading to the potential for the - фото 92

A related reaction produces formic acid (leading to the potential for the production of formate derivatives (esters of formic acid) instead of carbon dioxide:

See also Biohydrogen Biomass Biomass refers to biological material derived - фото 93

See also: Biohydrogen.

Biomass

Biomass refers to biological material derived from living or recently living organisms, such as plants or plant-derived materials. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods, which are broadly classified into: (i) thermal, (ii) chemical, and (iii) biochemical methods. This biomass conversion can result in fuel in gas, liquid, or solid form.

Biomass is a renewable energy source unlike other resources such as crude oil, natural gas, tar sand, coal, and oil shale. Agricultural products specifically grown for biofuel production include crops such as corn, soybeans, rapeseed, wheat, sugar beet, sugar cane, palm oil, Jatropha, as well as wood ( Table B-14).

Biomass is generally produced in a sustainable manner from water and carbon dioxide by photosynthesis. There are three main categories of biomass—primary, secondary, and tertiary.

Table B-14Major categories of biomass feedstocks.

Algae Prokaryotic algae, Eukaryotic algae, Kelps
Aquatic plants Algae, Water weed, Water hyacinth, Reed and rushes
Biorenewable wastes Agricultural wastes, Crop residues, Mill wood wastes, Urban wood wastes, Urban organic wastes
Energy crops Short rotation woody crops, Herbaceous woody crops, Grasses, Starch crops, Sugar crops, Forage crops, Oilseed crops, Switchgrass, Miscanthus
Food crops Grains, Oil crops
Forest products Wood; Logging residues; Trees, shrubs, and wood residues; Sawdust, bark etc.
Landfill Hazardous waste, Non-hazardous waste, Inert waste, Liquid waste
Lichens Crustose lichens, Foliose lichens, Fruticose lichen
Mosses Bryophyta, Polytrichales
Organic waste Municipal solid waste, Industrial organic wastes, Municipal sewage, and sludge

Biomass is biological organic matter but is more often used to refer to (i) energy crops grown specifically to be used as fuel, such as fast-growing trees or switch grass, (ii) agricultural residues and by-products, such as straw, sugarcane fiber, and rice hulls, and (iii) residues from forestry, construction, and other wood-processing industries.

Many different types of biomass can be grown for the express purpose of energy production ( Table B-15).

Table B-15Sources, processing options, and uses of biomass-derived products *.

Resources Collection Conversion End products
Stage 1 Stage 2 Stage 3 Stage 4
Agricultural crops
Energy crops
Forestry
Herbaceous plants
Oil-bearing plants
Wastes
Harvesting
Handling
Pretreatment
Biochemical processes
Chemical processes
Physical processes
Thermochemical
Biodiesel
Electrical power
Heat
Solid fuels
Transportation fuels
*The sub-categories are listed alphabetically and are not listed in an order of preference for processing. The choice of processing preference is dependent upon the type of biomass and the desired product.

Crops that have been used for energy include sugar cane, corn, sugar beets, grains, elephant grass, kelp (seaweed), and many others. There are two main factors which determine whether a crop is suitable for energy use. Good energy crops have a high yield of dry material per unit of land (dry tonnes/hectare). A high yield reduces land requirements and lowers the cost of producing energy from biomass. Similarly, the amount of energy which can be produced from a biomass crop must be less than the amount of energy required to grow the crop. In some circumstances like the heavily mechanized corn farms in the U.S. Midwest, the amount of ethanol which can be recovered from the corn is barely larger than the fuel required for tractors, fertilizers, and processing.

The components of biomass include triglycerides, sterols, alkaloids, resins, terpenes, terpenoids, and waxes. This includes everything from primary sources of crops and residues harvested/collected directly from the land to secondary sources such as sawmill residuals, to tertiary sources of post-consumer residuals that often end up in landfills. A fourth source, although not usually categorized as such, includes the gases that result from anaerobic digestion of animal manures or organic materials in landfills.

Primary biomass is produced directly by photosynthesis and includes all terrestrial plants now used for food, feed, fiber, and fuel wood. All plants in natural and conservation areas (as well as algae and other aquatic plants growing in ponds, lakes, oceans, or artificial ponds and bioreactors) are also considered primary biomass. However, only a small portion of the primary biomass produced will ever be harvested as feedstock material for the production of bioenergy and by-products.

Biomass feedstocks and fuels exhibit a wide range of physical and chemical properties ( Table B-16).

Table B-16Selected properties of representative biomass materials.

Mass %, dry Wood Grain* Municipal Solid Waste** Animal Wastes (Manure)
Carbon 50-53 45.0 47.6 35.1
Hydrogen 5.8-7.0 5.8 6.0 5.3
Nitrogen 0-0.3 2.4 1.2 2.5
Sulfur 0-0.1 0 0.3 0.4
Oxygen 38-44 42.5 32.9 38.7
Volatile matter 77-87 70-80 77 76.5
Fixed carbon 13-21 11 0
Ash 0.1-2.0 4.0 12 23.5
H/C atom ratio 1.4-1.6 1.5 1.5 1.8
GCV, MJ/kg (dry) 19.8-21.0 16.8 19 13.4
Moisture, % 25-60 16 20 7-35
* Red corn cob (corn stover) contains approximately 25% cellulose, 10% lignin, and 15% moisture. ** Combustible portion; may contain 9% metals and 12% glass/ceramics on an as-received basis.

For example, there are many types of coal and the gross heating value of these types varies from 8,600-12,900 Btu/ lb. However, nearly all kinds of biomass feedstocks destined for combustion range from 6,450 to 8,200 Btu/lb. For most agricultural residues, the heating values are even more uniform – approximately 6,450 to 7,300 Btu/lb; the values for most woody materials are 7,750 to 8,200 Btu/lb. Moisture content is probably the most important determinant of heating value. Air-dried biomass typically has approximately 15 to 20% moisture, whereas the moisture content for oven-dried biomass is around 0%. Moisture content is also an important characteristic of coals, varying in the range of 2 to 30%. However, the bulk density (and hence energy density) of most biomass feedstocks is generally low, even after densification, approximately 10 and 40% of the bulk density of most fossil fuels. Liquid biofuels have comparable bulk densities to fossil fuels.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Encyclopedia of Renewable Energy»

Представляем Вашему вниманию похожие книги на «Encyclopedia of Renewable Energy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Encyclopedia of Renewable Energy»

Обсуждение, отзывы о книге «Encyclopedia of Renewable Energy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x