James G. Speight - Encyclopedia of Renewable Energy

Здесь есть возможность читать онлайн «James G. Speight - Encyclopedia of Renewable Energy» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Encyclopedia of Renewable Energy: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Encyclopedia of Renewable Energy»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ENCYCLOPEDIA OF RENEWABLE ENERGY
Written by a highly respected engineer and prolific author in the energy sector, this is the single most comprehensive, thorough, and up-to-date reference work on renewable energy.
Encyclopedia of Renewable Energy: Audience

Encyclopedia of Renewable Energy — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Encyclopedia of Renewable Energy», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

It must be realized that the transfer from non-renewable energy source to renewable energy sources is not without some risk. Just as chemicals from non-renewable energy sources can enter the environment, chemicals from renewable energy sources can also enter the air, water, and soil when they are produced, used, or disposed. The impact of these chemicals on the environment is determined by the amount of the chemical that is released, the type and concentration of the chemical, and where it is found. Some chemicals can be harmful if released to the environment even when there is not an immediate, visible impact. On the other hand, some chemicals are of concern as they can work their way into the food chain and accumulate and/or persist in the environment for many years.

The final concentration of a chemical (or a mixture of chemicals) in various environmental systems (such as the atmosphere, water, and the land) depends on environmental emission rates and environmental distribution and fate of the chemical. Thus the first step in environmental risk assessment is always to quantify the emissions of a chemical into the atmosphere, the water, and the land.

Many chemicals, in fact all chemicals, that enter the environment should be categorized and ranked using hazard assessment criteria. This would not only ensure that truly pressing environmental issues are identified and prioritized, but would also maximize the use of limited resources. In the case of soluble chemicals, surrogate data such as persistence and bioaccumulation have been used, in combination with toxicity, for the purpose of hazard categorization. However, for insoluble or sparingly soluble chemicals such as metals and metal compounds, persistence and bioaccumulation are neither appropriate nor useful. Unfortunately, this is not always recognized by regulators or even by scientists.

The use of persistent, bioaccumulative and toxic (PBT) criteria for chemicals was developed to address the hazards posed by synthetic organic chemicals. In fact, the criteria and test methods to evaluate persistence (i.e., the lack of degradability of a chemical) and bioaccumulation (the dispersion of a chemical through knowledge of the water-octanol partition coefficient) were developed to be used in combination with toxicity in order to reduce the importance given to the use of toxicity data alone. These test methods were based on an understanding of the chemistry of chemicals of concern at the time and of the biological interactions that the chemicals would have with the surrounding biota. Specifically, it was realized that if some chemicals exerted high intrinsic toxicity under standardized laboratory test conditions but did not persist or bioaccumulate, the environmental hazard of such chemicals would be lower.

As mentioned above, persistence is measured by determining the lack of degradability of a substance from a form that is biologically available and active to a form that is less available. This applies to many substances – metals and metal compounds tend to be in forms that are not bioavailable. Only under specific conditions would metals or metal compounds transform into a bioavailable form. Thus, rather than persistence, the key criterion for classifying metals and metal compounds should be their capacity to transform into bioavailable form(s). Furthermore, although bioavailability is a necessary precursor to toxicity, it does not inevitably lead to toxicity. Although metals and metal compounds stay in the environment for long periods of time, the risk they may pose generally decreases over time. For example, metals introduced into the aquatic environment are subject to removal/immobilization processes (e.g., precipitation, complexation and absorption).

Similarly, the use of bioaccumulation has significant limitations for predicting hazard for metals and metal compounds. Generally, either bioconcentration factors (BCFs) or bioaccumulation factors (BAFs) are used for this purpose. A bioconcentration factor is the ratio of the concentration of a substance in an organism, following direct uptake from the surrounding environment (water), to the concentration of the same substance in the surrounding environment. A bioaccumulation factor considers uptake from food as well. In contrast to organic compounds, uptake of metals is not based on lipid partitioning. Further, organisms have internal mechanisms (homeostasis) that allow them to regulate (bioregulate) the uptake of essential metals and to control the presence of other metals. Thus, if the concentration of an essential metal in the surrounding environment is low and the organism requires more, it will actively accumulate that metal. This will result in an elevated bioconcentration factors (or bioaccumulation factor) value which, while of concern in the case of organic substances, is not an appropriate measure in the case of metals.

The primary determining factor of hazard for metals and metal compounds is therefore toxicity, which requires consideration of dose (indeed, the fundamental tenet of toxicology is the dose makes the poison ). Historically, it has been the practice to measure the toxicity of soluble metal salts, or indeed the toxicity of the free metal ion. However, in different media, metal ions compete with different types or forms of organic matter (e.g., fish gills, suspended solids, soil particulate material) to reduce the total amount of metals present in bioavailable form. Toxicity of the bioavailable fraction (i.e., as determined through transformation processes) is the most appropriate and technically defensible method for categorizing and ranking the hazard of metals and metal compounds.

The relative proportion of hazardous constituents present in any collection of chemicals (crude oil-derived products included) is variable and rarely consistent because of site differences. Therefore, the extent of the contamination will vary from one site to another and, in addition, the farther a contaminant progresses from low molecular weight to high molecular weight the greater the occurrence of polynuclear aromatic hydrocarbons, complex ring systems (not necessity aromatic ring systems) as well as an increase in the composition of the semi-volatile chemicals or the non-volatile chemicals. These latter chemical constituents (many of which are not so immediately toxic as the volatiles) can result in long-term/chronic impacts to the flora and fauna of the environment. Thus, any complex mixture of chemicals should be analyzed for the semi-volatile compounds which may pose the greatest long-term risk to the environment.

Heavy metals are common chemical pollutants. The most common heavy metals found at contaminated sites, in order of abundance are Pb, Cr, As, Zn, Cd, Cu, and Hg. Those metals are important since they are capable of decreasing crop production due to the risk of bioaccumulation and biomagnification in the food chain. There is also the risk of superficial and groundwater contamination. Knowledge of the basic chemistry, environmental, and associated health effects of these heavy metals is necessary in understanding their speciation, bioavailability, and remedial options. The fate and transport of a heavy metal in soil depends significantly on the chemical form and speciation of the metal. Once in the soil, heavy metals are adsorbed by initial fast reactions (minutes, hours), followed by slow adsorption reactions (days, years) and are, therefore, redistributed into different chemical forms with varying bioavailability, mobility, and toxicity (Shiowatana et al., 2001). This distribution is believed to be controlled by reactions of heavy metals in soils such as (i) mineral precipitation and dissolution, (ii) ion exchange, adsorption, and desorption, (iii) aqueous complexation, (iv) biological immobilization and mobilization, and (v) plant uptake (Levy et al., 1992). The toxicity of metals varies greatly with pH, water hardness, dissolved oxygen levels, salinity, temperature and other parameters.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Encyclopedia of Renewable Energy»

Представляем Вашему вниманию похожие книги на «Encyclopedia of Renewable Energy» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Encyclopedia of Renewable Energy»

Обсуждение, отзывы о книге «Encyclopedia of Renewable Energy» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x