Data Mining and Machine Learning Applications

Здесь есть возможность читать онлайн «Data Mining and Machine Learning Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Mining and Machine Learning Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Mining and Machine Learning Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

DATA MINING AND MACHINE LEARNING APPLICATIONS
The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration.
Audience

Data Mining and Machine Learning Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Mining and Machine Learning Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.7 Data Mining Tools

Various data mining tools are available for researchers and organizations. We will discuss the hands-on process of installing three major tools, namely Python, KNIME, and Rapid Miner [19–25].

1.7.1 Python for Data Mining

We will discuss Python for data mining in this last section with various techniques. Regression is a technique to reduce errors by estimating the relationship that may exist between variables. It is also possible to form clusters in Python. One can implement this regression method using Python as follows:

User can develop a regression model for given variables and helps researchers, students to estimate the relationship exists between them. It also helps in classifying the given objects, analyze the clusters formed, etc., using tools provided in Python [24].

Panda,” a library supported by Python, helps to clean and process the input data.

NumPy—a package supported by Python to perform computations.

Matplotlib—once the data is processed, there is a need to visualize this data, and it is possible using this package supported by Python.

Scikit-learn—a library supported by Python to model the data.

Python used in data mining, and machine learning executes the following steps:

1 Import the required libraries

2 Dataset loading (import)

3 If the dataset consists of missing data, then it must handle this missing data

4 Classifying or handling categorical data

5 Dividing the dataset into training and testing dataset

6 Features scaling (actually, it is a transformation of variables).

Installation and Setup of Python

1) Click on the link below and select OS: https://www.anaconda.com/download/[24]

2) Download Python 3.7 version (around 500 MB)

3) Once installed, launch the Anaconda Navigator (search by clicking the windows button)

4) Run the required Application (Jupyter, Spyder, etc.)

Make sure you constantly update the entire Anaconda distribution as it takes care of updating all the modules and dependencies inside (For more on installation, go to https://docs.anaconda.com/anaconda/install/windows/for Windows version).

1.7.2 KNIME

Features of KNIME: KNIME [25] is an open-source analytical platform for data science. It helps to understand and design data science workflows, understanding time-series data analysis, to build machine learning models, and understand the data using visualization tools (charts, plots, etc.). It also helps to export the reports generated. KNIME workbench consists of KNIME explorer, Workflow bench, Node Repository, Workflow Editor, Description, Outline, and Console . It supports the data wrangling technique where one can collect and process the data from any source. It comes in two flavors:

◦ KNIME analytical platform

◦ KNIME server.

Both these platforms are available in Microsoft Azure and Amazon AWS

KNIME TOOL Installation

You can download the installer from the KNIME website. Once you successfully download it start the installation as specified in the next diagrams ( Figure 1.5). Every installation requires you must accept the agreement, click on the button and accept the agreement ( Figure 1.6). Installation requires specifying the path for installing the software, and as shown in the above diagram, it is a default path. If you wish, you can change the path by clicking on the “Browse” ( Figures 1.7and 1.8).

Figure 15 Installation of KNIME Figure 16 Installation of KNIME 2 - фото 4

Figure 1.5 Installation of KNIME.

Figure 16 Installation of KNIME 2 Figure 17 Setting path for installing - фото 5

Figure 1.6 Installation of KNIME (2).

Figure 17 Setting path for installing KNIME Figure 18 Starting - фото 6

Figure 1.7 Setting path for installing KNIME.

Figure 18 Starting installation of KNIME Figures 19 116show the complete - фото 7

Figure 1.8 Starting installation of KNIME.

Figures 1.9– 1.16show the complete workflow for selecting a Workspace path, and if you want to change the way, you can change it by clicking on the “Browse.” Finally, Figure 1.16gives you the home screen for mining purpose.

Figure 19 Selecting directory as a workspace Figure 110Starting KNIME - фото 8

Figure 1.9 Selecting directory as a workspace.

Figure 110Starting KNIME Figure 111Completing setup wizard - фото 9

Figure 1.10Starting KNIME.

Figure 111Completing setup wizard Figure 112Installing Workspace in - фото 10

Figure 1.11Completing setup wizard.

Figure 112Installing Workspace in KNIME Figure 113Installing KNIME 2 - фото 11

Figure 1.12Installing Workspace in KNIME.

Figure 113Installing KNIME 2 Figure 114Specifying memory for KNIME - фото 12

Figure 1.13Installing KNIME (2).

Figure 114Specifying memory for KNIME Figure 115Finalizing the - фото 13

Figure 1.14Specifying memory for KNIME.

Figure 115Finalizing the installation of KNIME Figure 116 Initial screen - фото 14

Figure 1.15Finalizing the installation of KNIME.

Figure 116 Initial screen of KNIME 173 Rapid Miner One can visit - фото 15

Figure 1.16 Initial screen of KNIME.

1.7.3 Rapid Miner

One can visit https://rapidminer.com/products/studio/for further instructions to download this tool. Its main features are as follows speedy creation of predictive models; Rich set of libraries to build the model like Bayesian modeling, Regression, Clustering, Neural networks, Decision trees . A rapid miner comes with templates, which are provided for guidance. One can use any data source like MS-excel, Access, CSV, NoSQL, MongoDB, Microsoft SQL Server, MySQL, Cassandra, PDF, HTML, XML . Rapid Miner Supports ETL (extract–transform–load), multiple file types, and Data exploration using exact statistical analysis. The Code control & management module is responsible for Background process execution, Automatic optimization, Scripting, Macros, Logging, Process control, and Process-based reporting. One can obtain good visualization using Scatter, scatter matrices, Line, Bubble, Parallel, Deviation, Box, 3-D, Density, Histograms, Area, Bar charts, stacked bars, Pie charts, Survey plots, Self-organizing maps, Andrews curves, Quartile, Surface/contour plots, time series plots, Pareto/lift chart. And finally, One can validate the designed model before deployment through Split validation, Bootstrapping, Batch cross-validation, Wrapper cross-validation, Lift chart, and Confusion matrix [24].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Mining and Machine Learning Applications»

Представляем Вашему вниманию похожие книги на «Data Mining and Machine Learning Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Mining and Machine Learning Applications»

Обсуждение, отзывы о книге «Data Mining and Machine Learning Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x