The Internet of Medical Things (IoMT)

Здесь есть возможность читать онлайн «The Internet of Medical Things (IoMT)» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Internet of Medical Things (IoMT): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Internet of Medical Things (IoMT)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

INTERNET OF MEDICAL THINGS (IOMT)
Providing an essential addition to the reference material available in the field of IoMT, this timely publication covers a range of applied research on healthcare, biomedical data mining, and the security and privacy of health records.

The Internet of Medical Things (IoMT) — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Internet of Medical Things (IoMT)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The greater number of arginine in the protein model enhances the stability of the protein. This is happens through the electrostatic interactions between their guanidine group [29]. Hence, it was confirmed that all the protein models are in the identical stable conditions. The outcome of Cys_ Recserver exhibits that the quantity of disulfide bonds in EGFR is 42, K-ras oncogene protein is 5, and TP53 is 11 (Table 1.2).

1.3.2 Prediction of Secondary Structures

Results from SOPMA analysis shows that random coils dominant among secondary structure components in the protein models ( Figure 1.1). The constitution of alpha helix in EGFR, K-ras oncogene protein, and TP53 were shown in Table 1.3.

The outcome from this analysis specified that EGFR, K-ras oncogene protein, and TP53 constitutes of 15, 11, and 10α helices, respectively. Besides that, Table 1.4 represents the details of the longest and shortest alpha helix of all the protein models.

1.3.3 Verification of Stability of Protein Structures

PROCHECK server was used to verify the stereo chemical quality and the geometry of protein models through Ramachandran plots ( Figure 1.2). Furthermore, it was revealed that all the protein structures are in most favorable region because they had percentage value more than 80% (Table 1.5). Thus, the standard of these proteins was assessed to be immense and reliable. On top of that, PROCHECK analysis disclose that a number of residues such as TYR265 and GLU51 for EGFR while LYS180 for K-ras oncogene protein were located away from energetically favored regions of Ramachandran plot. Besides that, there are no residues found at forbade region for TP53 protein model.

Thereby, the stereo chemical interpretation of backbone phi/psi dihedral angles deduced that EGFR, K-ras oncogene protein, and TP53 have low percentage of residues among the protein models. Moreover, ProQ was utilized in order to validate “the quality” with the usage of Levitt-Gerstein (LG) score and maximum subarray (MaxSub). All the protein models were within the range for LG and MaxSub score according to the outcome exhibited for creating a good model (Table 1.5).

Table 1.2The number disulfide bonds were quantitated by Cys_Rec prediction program.

Protein Cys_Rec Score
EGFR Cys_9 –13.0
Cys_13 39.2
Cys_17 100.1
Cys_25 98.3
Cys_26 104.2
Cys_30 104.1
Cys_34 90.5
Cys_42 48.2
Cys_45 56.0
Cys_54 58.2
Cys_58 49.5
Cys_85 55.7
Cys_89 54.9
Cys_101 50.4
Cys_105 44.0
Cys_120 63.0
Cys_123 73.3
Cys_127 75.3
Cys_131 61.6
Cys_156 33.0
Cys_264 45.3
Cys_293 43.8
Cys_300 56.5
Cys_304 46.8
Cys_309 66.0
Cys_317 65.6
Cys_320 60.2
Cys_329 49.1
Cys_333 42.2
Cys_349 42.2
Cys_352 32.9
Cys_356 62.9
Cys_365 70.2
Cys_373 54.2
Cys_376 54.8
Cys_385 35.8
Cys_389 41.2
Cys_411 78.8
Cys_414 85.1
Cys_418 84.4
Cys_422 26.5
Cys_430 3.7
KRAS Cys_12 –28.5
Cys_51 –74.2
Cys_80 –72.6
Cys_118 –56.4
Cys_185 –15.2
TP53 Cys_124 –19.4
Cys_135 –1.6
Cys_141 –17.9
Cys_176 –9.1
Cys_182 –45.1
Cys_229 –54.4
Cys_238 1.6
Cys_242 –5.5
Cys_275 –34.4
Cys_277 –51.5
Cys_339 –32.8

ERRAT analysis is used for assessing the protein models which were determined by x-ray crystallography. Next, the value of ERRAT relies upon the statistics of non-bonded atomic interactions in the 3D protein structures. The protein is generally accepted as high quality protein if the percentage is greater than 50%. The ERRAT analysis score result shows that K-ras oncogene protein had the highest at 94.767. Therefore, it can be seen that K-ras oncogene protein has high quality resolution among the protein models. Besides that, the score value for EGFR is 88.010 while 90.374 for TP53 ( Figure 1.3).

The Verify3D server was used to reveal the residues in each protein in which EGFR, K-ras oncogene, and TP53 had 98.59%, 100.00%, and 92.96% residues, respectively. Next, the average 3D-1D score of all three proteins are more than 0.2. As a consequence, it specifies that all of the sequences were in line with its protein model ( Figure 1.4). Certainly, the resulting energy minimized EGFR, K-ras oncogene protein, and TP53 protein models satisfied the standard for evaluation of protein. Hence, the docking analysis with ligand will be carried out.

Figure 11 SOPMA plots for a EGFR b Kras oncogene protein and c TP53 - фото 2

Figure 1.1 SOPMA plots for (a) EGFR, (b) K-ras oncogene protein, and (c) TP53.

Table 1.3Secondary structure of the EGFR, K-ras oncogene protein, and TP53.

Secondary structure Alpha helix (Hh) Extended strand (Ee) Beta turn (Tt) Random coil (CC)
EGFR 16.81 16.81 3.23 64.44
KRAS 43.62 21.81 7.45 27.13
TP53 18.79 18.21 3.18 59.83

Table 1.4Composition of α-helix EGFR, K-ras oncogene protein, and TP53.

Amino acid Longest alpha helix Residues Shortest alpha helix Number of residues
EGFR α 14 14 α 3, α 6, α 11, α 15 1
KRAS α 11 20 α 1, α 10 1
TP53 α 5 11 α 7 1
Figure 12 Ramachandran plots for a EGFR b Kras oncogene protein and c - фото 3

Figure 1.2 Ramachandran plots for (a) EGFR, (b) K-ras oncogene protein, and (c) TP53.

Table 1.5Validation of the EGFR, K-ras oncogene protein, and TP53.

Structure Ramachandran plot statistics Goodness factor ProQ
Most favored Additionally allowed Generously allowed Disallowed Dihedral angles Covalent forces Overall average LG score MaxSub
EGFR 90.6 8.6 0.6 0.3 –0.27 0.02 –0.14 3.814 0.302
KRAS 90.5 8.9 0.0 0.6 –0.12 0.04 –0.04 4.094 0.474
TP53 92.9 7.1 0.0 0.0 –0.16 0.07 –0.06 4.417 0.454

Figure 13 ERRAT plots for a EGFR b Kras oncogene protein and c TP53 - фото 4

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Internet of Medical Things (IoMT)»

Представляем Вашему вниманию похожие книги на «The Internet of Medical Things (IoMT)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Internet of Medical Things (IoMT)»

Обсуждение, отзывы о книге «The Internet of Medical Things (IoMT)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x