The Internet of Medical Things (IoMT)

Здесь есть возможность читать онлайн «The Internet of Medical Things (IoMT)» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Internet of Medical Things (IoMT): краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Internet of Medical Things (IoMT)»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

INTERNET OF MEDICAL THINGS (IOMT)
Providing an essential addition to the reference material available in the field of IoMT, this timely publication covers a range of applied research on healthcare, biomedical data mining, and the security and privacy of health records.

The Internet of Medical Things (IoMT) — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Internet of Medical Things (IoMT)», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A cloud technology to avoid data duplication currently uses computing decks, and efferent and convergence remain important management strategy to secure de-duplication. Insured reduction strategy unnecessary data is widely applied to cloud storage despite the mass convergence encryption. The distribution of security is implemented for a major concern. Convergence works as encryption here. Large amounts of key are required to maintain power. At the same time, it is a difficult task.

Research shows that some areas employ classification of public data to share data in private and technology and to protect personal data. One such classification technology is the k-nearest neighbor algorithm. It is a machine learning to know the types of technology classified as personal data and public data. Personal data is encrypted and sent using RSA technology cloud server.

2.6 Conclusion

Personal data is one of the main issues when dealing with data storage in cloud security. Classification of data in the cloud is the identification of a set of standards. This proposal depends on the type of security level content and access. We are able to provide a level of security in the cloud storage needed for privacy and restrictions on access to a set of data. We classified them based on analysis of multiple data elements and criteria. This paper focuses on data security for cloud technology environment. The main objective of this study was to classify data protection elements based on data. This data in sensitive and non-sensitive partitions winning better technology will improve. Sensitive data is sent to the cloud and sent via the data algorithm blowfish, while non-transmitting sensitive data are stored in the cloud server. Also, the clouds split isolated a separate partition and stored in data partition. But all data will be stored in the same cloud.

A clinical decision support system (CDSS) is an application that analyzes data to help healthcare providers make decisions, and improve patient care. A CDSS focuses on using knowledge management to get clinical advice based on multiple factors of patient-related data. Clinical decision support systems enable integrated workflows, provide assistance at the time of care, and offer care plan recommendations. Physicians use a CDSS to diagnose and improve care by eliminating unnecessary testing, enhancing patient safety, and avoiding potentially dangerous and costly complications. The applications of big data in healthcare include, cost reduction in medical treatments, eliminate the risk factors associated with diseases, prediction of diseases, improves preventive care, analyzing drug efficiency. Some challenging tasks for the healthcare industry are:

1 (i) How to decide the most effective treatment for a particular disease?

2 (ii) How certain policies impact the outlay and behavior?

3 (iii) How does the healthcare cost likely to rise for different aspects of the future?

4 (iv) How the claimed fraudulently can be identified?

5 (v) Does the healthcare outlay vary geographically?

These challenges can be overcome by utilizing big data analytical tools and techniques. There are four major pillars of quality healthcare. Such as real-time patient monitoring, patient-centric care, improving the treatment methods, and predictive analytics of diseases. All these four pillars of quality healthcare can be potently managed by using descriptive, predictive, and prescriptive big data analytical techniques.

References

1. Smith, Rawat, P.S., Saroha, G.P., Bartwal, V., Evaluating SaaSModeler (small mega) Running on the Virtual Cloud Computing Environment using CloudSim. Int. J. Comput. Appl . (0975-8887), 5, 13, 2012c of September. London, A247, 529–551, April 1955.

2. Whitney, A. and Dwyer, II, S.J., the performance and implementation of the K-nearest neibbor decision rule with no training samples correctly identified, in: Proc. 4 Ann. Allerton Conf. On the Circuit System Band Theory , 1966.

3. Dasarathy, B.V., Nosing aroung the environment: A new structure and a system of classification rules for recognition in the most affected. IEEE Trans. Pattern Anal. Mach. Intell ., PAMI- 2, 67–71, 1980.

4. Keller, J.M., Gray, M.R., Givens, Jr, J.A., A Fussy-K-Nearest Neighbor algorithm. IEEE Trans. Syst. Man Cybern ., SMC-15, 4, 580–585, July/August 1985.

5. Bauer, E. and Kohavi, R., A comparison of voting classification algorithms impirical: Bagging, Improve and variants. Mach. Learn ., 36.1, 36105–139, 1999.

6. Khan, M., Ding, Q., Perrizo, W., K-Nearest Neighbor Classification on Spatial Data Streams Using P-Trees1, 2. PAKDD 2002 LNAI , vol. 2336, pp. 517–528, 2002.

7. Catteddu, D. and Hogben, G., Cloud Computing: Benefits, risks and recommendations for information security , ENISA, Berlin, Heidelberg, 2009.

8. Phyu, T.N., Survey on Data Mining Classification Techniques. Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 , March 18-2009, vol. I, IMECS, 2009.

9. Ram, C.P. and Sreenivaasan, G., Security as a Service (SASS): Securing of user data by the coprocessor and distributing data. Trendz Information and Computing Sciences (TISC2010) , December 2010, pp.152–155.

10. Yau, S.S. and Ho, G., Privacy protection in cloud computing sytems. Int. J. Software Inform ., 4, 4, 351–365, December 2010.

11. Mishra, A., An Authentication Mechanism Based on Client-Server Architecture for Accessing Cloud Computing, International Journal of Emerging Technology Advanced Engineering , 2, 7, 95–99, July 2012.

12. Huang, S.-C. and Chen, B.-H., Highly accurate moving object detection in variable bit rate video-based traffic monitoring systems. IEEE Transactions on Neural Networks and Learning Systems , 24.12, 1920–1931, 2013.

13. Kafhali, S.E. and Haqiq, A., Effect of Mobility and Traffic Models on the energy consumption in MANET Routing Protocols. arXiv preprint arXiv:1304.3259, 2013.

14. Mishra, A. et al ., A Review on DDOS Attack, TCP Flood Attack in Cloud Environment. Elsevier SSRN International Conference on Intelligent Communication and computation Research , Available at https://ssrn.com/abstract=3565043, March 31, 2020.

1 *Corresponding author: saurabhgyangit@gmail.com

2 †Corresponding author: hkshakya@gwa.amity.edu

3 ‡Corresponding author: ashish.mish2009@gmail.com

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Internet of Medical Things (IoMT)»

Представляем Вашему вниманию похожие книги на «The Internet of Medical Things (IoMT)» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Internet of Medical Things (IoMT)»

Обсуждение, отзывы о книге «The Internet of Medical Things (IoMT)» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x