NITIN KUMAR - Thermal Food Engineering Operations

Здесь есть возможность читать онлайн «NITIN KUMAR - Thermal Food Engineering Operations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Thermal Food Engineering Operations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Thermal Food Engineering Operations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Thermal Food Engineering Operations
Presenting cutting-edge information on new and emerging food engineering processes,
, the first volume in the new series, “Bioprocessing in Food Science,” is an essential reference on the modeling, quality, safety, and technologies associated with food processing operations today.
This outstanding new volume:
Audience:

Thermal Food Engineering Operations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Thermal Food Engineering Operations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

55. F. G. Chizoba Ekezie, D. W. Sun, Z. Han, and J. H. Cheng, “Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments,” Trends in Food Science and Technology , vol. 67. 2017, doi: 10.1016/j.tifs.2017.05.014.

56. G.-A. Ştefănoiu, E. E. Tănase, A. C. Miteluţ, and M. E. Popa, “Unconventional Treatments of Food: Microwave vs. Radiofrequency,” Agric. Agric. Sci. Procedia , vol. 10, 2016, doi: 10.1016/j.aaspro.2016.09.024.

57. S. Chandrasekaran, S. Ramanathan, and T. Basak, “Microwave food processing-A review,” Food Research International , vol. 52, no. 1. 2013, doi: 10.1016/j.foodres.2013.02.033.

58. P. Lopez-Iturri, S. De Miguel-Bilbao, E. Aguirre, L. Azpilicueta, F. Falcone, and V. Ramos, “Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels,” Biomed Res. Int. , vol. 2015, 2015, doi: 10.1155/2015/603260.

59. Q. Guo, D. W. Sun, J. H. Cheng, and Z. Han, “Microwave processing techniques and their recent applications in the food industry,” Trends in Food Science and Technology , vol. 67. 2017, doi: 10.1016/j.tifs.2017.07.007.

60. H. Jiang, M. Zhang, A. S. Mujumdar, and R. X. Lim, “Drying uniformity analysis of pulse-spouted microwave–freeze drying of banana cubes,” Dry. Technol. , vol. 34, no. 5, 2016, doi: 10.1080/07373937.2015.1061000.

61. A. Álvarez, J. Fayos-Fernández, J. Monzó-Cabrera, M. J. Cocero, and R. B. Mato, “Measurement and correlation of the dielectric properties of a grape pomace extraction media. Effect of temperature and composition,” J. Food Eng. , vol. 197, 2017, doi: 10.1016/j.jfoodeng.2016.11.009.

62. M. Vinatoru, T. J. Mason, and I. Calinescu, “Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials,” TrAC - Trends in Analytical Chemistry , vol. 97. 2017, doi: 10.1016/j.trac.2017.09.002.

63. K. Knoerzer, P. Juliano, and G. Smithers, Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification . 2016.

64. G. C. Jeevitha, H. B. Sowbhagya, and H. U. Hebbar, “Application of microwaves for microbial load reduction in black pepper ( Piper nigrum L.),” J. Sci. Food Agric. , vol. 96, no. 12, 2016, doi: 10.1002/jsfa.7630.

65. M. C. Pina-Pérez, M. Benlloch-Tinoco, D. Rodrigo, and A. Martinez, “ Cronobacter sakazakii Inactivation by Microwave Processing,” Food Bioprocess Technol. , vol. 7, no. 3, pp. 821–828, 2014, doi: 10.1007/s11947-013-1063-2.

66. S. Kar, A. S. Mujumdar, and P. P. Sutar, “ Aspergillus niger inactivation in microwave rotary drum drying of whole garlic bulbs and effect on quality of dried garlic powder,” Dry. Technol. , vol. 37, no. 12, 2019, doi: 10.1080/07373937.2018.1517777.

67. P. Piyasena, C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah, “Radio Frequency Heating of Foods: Principles, Applications and Related Properties - A Review,” Critical Reviews in Food Science and Nutrition , vol. 43, no. 6. 2003, doi: 10.1080/10408690390251129.

68. F. Salazar, S. Garcia, M. Lagunas-Solar, Z. Pan, and J. Cullor, “Effect of a heat-spray and heat-double spray process using radiofrequency technology and ethanol on inoculated nuts,” J. Food Eng. , vol. 227, 2018, doi: 10.1016/j. jfoodeng.2017.12.017.

69. F. Marra, L. Zhang, and J. G. Lyng, “Radio frequency treatment of foods: Review of recent advances,” Journal of Food Engineering , vol. 91, no. 4. 2009, doi: 10.1016/j.jfoodeng.2008.10.015.

70. S. Ozturk et al., “Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing,” LWT , vol. 111, 2019, doi: 10.1016/j.lwt.2019.04.090.

71. S. Liu et al. , “Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies,” J. Food Eng. , vol. 217, 2018, doi: 10.1016/j. jfoodeng.2017.08.013.

72. S. Hu, Y. Zhao, Z. Hayouka, D. Wang, and S. Jiao, “Inactivation kinetics for Salmonella typhimurium in red pepper powders treated by radio frequency heating,” Food Control , vol. 85, 2018, doi: 10.1016/j.foodcont.2017.10.034.

73. S. G. Jeong and D. H. Kang, “Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating,” Int. J. Food Microbiol. , vol. 176, 2014, doi: 10.1016/j.ijfoodmicro.2014.01.011.

74. Y. Zhao, W. Zhao, R. Yang, J. Singh Sidhu, and F. Kong, “Radio frequency heating to inactivate microorganisms in broccoli powder,” Food Qual. Saf. , vol. 1, no. 1, 2017, doi: 10.1093/fqs/fyx005.

75. M. Mazen Hamoud-Agha and K. Allaf, “Instant Controlled Pressure Drop (DIC) Technology in Food Preservation: Fundamental and Industrial Applications,” in Food Preservation and Waste Exploitation , 2020.

76. T. Allaf, C. Besombes, I. Mih, L. Lefevre, and K. Allaf, “Decontamination of Solid and Powder Foodstuffs using DIC Technology,” in Advances in Computer Science and Engineering , 2011.

77. S. Mounir, C. Besombes, N. Al-Bitar, and K. Allaf, “Study of instant controlled pressure drop DIC treatment in manufacturing snack and expanded granule powder of Apple and Onion,” Dry. Technol. , vol. 29, no. 3, 2011, doi: 10.1080/07373937.2010.491585.

78. A. Demirdöven and T. Baysal, “Optimization of ohmic heating applications for pectin methylesterase inactivation in orange juice,” J. Food Sci. Technol. , vol. 51, no. 9, 2014, doi: 10.1007/s13197-012-0700-5.

79. W. Il Cho, J. Y. Yi, and M. S. Chung, “Pasteurization of fermented red pepper paste by ohmic heating,” Innov. Food Sci. Emerg. Technol. , vol. 34, 2016, doi: 10.1016/j.ifset.2016.01.015.

80. M. Kumar, Jyoti, and A. Hausain, “Effect of ohmic heating of buffalo milk on microbial quality and tesure of paneer,” Asian J. Dairy. Foods Res. , vol. 33, no. 1, 2014, doi: 10.5958/j.0976-0563.33.1.003.

81. J. H. Ryang et al ., “Inactivation of Bacillus cereus spores in a tsuyu sauce using continuous ohmic heating with five sequential elbow-type electrodes,” J. Appl. Microbiol. , vol. 120, no. 1, 2016, doi: 10.1111/jam.12982.

82. S. H. Park, V. M. Balasubramaniam, S. K. Sastry, and J. Lee, “Pressure-ohmicthermal sterilization: A feasible approach for the inactivation of Bacillus amyloliquefaciens and Geobacillus stearothermophilus spores,” Innov. Food Sci. Emerg. Technol. , vol. 19, 2013, doi: 10.1016/j.ifset.2013.03.005.

83. R. Somavat, H. M. H. Mohamed, Y. K. Chung, A. E. Yousef, and S. K. Sastry, “Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating,” J. Food Eng. , vol. 108, no. 1, 2012, doi: 10.1016/j. jfoodeng.2011.07.028.

84. X. Tian, Q. Yu, W. Wu, and R. Dai, “Inactivation of microorganisms in foods by ohmic heating: A review,” J. Food Prot. , vol. 81, no. 7, pp. 1093–1107, 2018, doi: 10.4315/0362-028X.JFP-17-343.

85. R. Pereira, J. Martins, C. Mateus, J. Teixeira, and A. Vicente, “Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating,” Chem. Pap. , vol. 61, no. 2, 2007, doi: 10.2478/ s11696-007-0008-5.

86. S. Leizerson and E. Shimoni, “Effect of ultrahigh-temperature continuous ohmic heating treatment on fresh orange juice,” J. Agric. Food Chem. , vol. 53, no. 9, 2005, doi: 10.1021/jf0481204.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Thermal Food Engineering Operations»

Представляем Вашему вниманию похожие книги на «Thermal Food Engineering Operations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Thermal Food Engineering Operations»

Обсуждение, отзывы о книге «Thermal Food Engineering Operations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x