42. Liu, Z., Qiao, L., Yang, F., Gu, H., & Yang, L. (2017). Brönsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. International Journal of Biological Macromolecules , 94 , 309-318.
43. Lind, I. (1991). The measurement and prediction of thermal properties of food during freezing and thawing - A review with particular reference to meat and dough. In Journal of Food Engineering (Vol. 13, Issue 4, pp. 285– 319). Elsevier. https://doi.org/10.1016/0260-8774(91)90048-W.
44. Lopez-Iturri, P., de Miguel-Bilbao, S., Aguirre, E., Azpilicueta, L., Falcone, F., & Ramos, V. (2015). Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels. BioMed Research International , 2015 .
45. Lung, R. B., Masanet, E., & Mckane, A. (2006). The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry. In 2006 Industrial Energy Technology ConferenceProceedings, New Orleans, LA, 05/10-11/2008 . COLLABORATION-ResourceDynamicsCorporation/ Virginia. https://digital.library.unt.edu/ark:/67531/metadc898508/.
46. Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2020). Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends in Food Science & Technology , 97 , 451-465.
47. Marszałek, K., Mitek, M., & Skąpska, S. (2015). Effect of continuous flow microwave and conventional heating on the bioactive compounds, colour, enzymes activity, microbial and sensory quality of strawberry purée. Food and Bioprocess Technology , 8 (9), 1864-1876.
48. Ma, Y., Liu, S., Wang, Y., Adhikari, S., Dempster, T. A., & Wang, Y. (2019). Direct biodiesel production from wet microalgae assisted by radio frequency heating. Fuel , 256 , 115994.
49. Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology , 91 (1), 1-8.
50. Mohammad Reza Zareifard. (2014, January). Electrical conductivity data for foods. | . Ohmic Heating in Food Processing. https://www.researchgate.net/publication/280532621_Electrical_conductivity_data_for_foods
51. Moreno-Vilet, L., Hernández-Hernández, H. M., & Villanueva-Rodríguez, S. J. (2018). Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innovative Food Science and Emerging Technologies , 50 , 196–206. https://doi.org/10.1016/j.ifset.2018.06.013.
52. Musto, M., Faraone, D., Cellini, F., & Musto, E. (2014). Changes of DNA quality and meat physicochemical properties in bovine supraspinatus muscle during microwave heating. Journal of the Science of Food and Agriculture , 94 (4), 785-791.
53. Nowak, D., & Lewicki, P. P. (2004). Infrared drying of apple slices. Innovative Food Science and Emerging Technologies , 5 (3), 353–360. https://doi.org/10.1016/j.ifset.2004.03.003
54. Ohlsson, T., & Bengtsson, N. (Eds.). (2003). Minimal processing technologies in the food industry . CRC.
55. Ozkahraman, B. C., Sumnu, G., & Sahin, S. (2016). Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven. Journal of Food Science and Technology , 53 (3), 1567-1575.
56. Ozkoc, S. O., & Seyhun, N. (2015). Effect of gum type and flaxseed concentration on quality of gluten-free breads made from frozen dough baked in infrared-microwave combination oven. Food and Bioprocess Technology , 8 (12), 2500-2506.
57. Öztürk, S., Şakıyan, Ö., & Özlem Alifakı, Y. (2017). Dielectric properties and microwave and infrared-microwave combination drying characteristics of banana and kiwifruit. Journal of Food Process Engineering , 40 (3), e12502.
58. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non- thermal technologies in food processing. Food Research International , 43 (7), 1936–1943. https://doi.org/10.1016/j.foodres.2009.09.013
59. Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S., & Awuah, G. B. (2003). Radio frequency heating of foods: principles, applications and related properties—a review. Critical Reviews in Food Science and Nutrition , 43 (6), 587-606.
60. Pradeep, P., Abdullah, S. A., Choi, W., Jun, S., Oh, S., & Ko, S. (2013). Potentials of microwave heating technology for select food processing applications-a brief overview and update. Journal of Food Processing and Technology , 4 (11).
61. Priyadarshini, A., Rayaguru, K., & Nayak, P. K. (2020). Influence of Ohmic Heating on Fruits and Vegetables: A Review. Journal of Critical Reviews , 7 (19), 1952-1959.
62. Rahman, M. S. (2007). Handbook of Food Preservation. In Food Science and Technology . https://doi.org/10.1017/CBO9781107415324.004
63. Richardson, P. (2001). Thermal technologies in food processing. In Food Science and Technology . https://doi.org/10.1017/CBO9781107415324.004.
64. S.-S. Kim, D.-H. K. (2017). Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli O157_H7, S. Typhimurium, L. monocytogenes , and MS-2 bacteriophage in salsa _ Elsevier Enhanced Reader.pdf. Food Control , 300–305.
65. Sensoy, I., & Sastry, S. K. (2007). Ohmic blanching of mushrooms. Journal of Food Process Engineering , 27 (1), 1–15. https://doi.org/10.1111/j.1745-4530.2004.tb00619.x.
66. Si, X., Chen, Q., Bi, J., Yi, J., Zhou, L., & Wu, X. (2016). Infrared radiation and microwave vacuum combined drying kinetics and quality of raspberry. Journal of Food Process Engineering , 39 (4), 377-390.
67. Song, Y., Wu, L., Li, N., Hu, M., & Wang, Z. (2015). Utilization of a novel microwave-assisted homogeneous ionic liquid microextraction method for the determination of Sudan dyes in red wines. Talanta , 135 , 163-169.
68. Soysal, Y., Arslan, M., & Keskin, M. (2009). Intermittent microwave-convective air drying of oregano. Food Science and Technology International , 15 (4), 397-406.
69. Ştefănoiu, G. A., Tănase, E. E., Miteluţ, A. C., & Popa, M. E. (2016). Unconventional treatments of food: Microwave vs. Radiofrequency. Agriculture and Agricultural Science Procedia , 10 , 503-510.
70. Stephen, N. M., Shakila, R. J., Jeyasekaran, G., & Sukumar, D. (2010). Effect of different types of heat processing on chemical changes in tuna. Journal of Food Science and Technology , 47 (2), 174-181.
71. Sun, D. W. (2005). Emerging technologies for food processing . Elsevier.
72. Tang, J. (2015). Unlocking Potentials of Microwaves for Food Safety and Quality. In Journal of Food Science (Vol. 80, Issue 8, pp. E1776–E1793). https://doi.org/10.1111/1750-3841.12959
73. Tao, Y., & Sun, D. W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition , 55 (4), 570-594.
74. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics , 10 (1), 1-11.
75. Thomas Ohlsson and Nils Bengtsson. (2002). Minimal Processing Technologies in the Food Industry. In Minimal Processing Technologies in the Food Industry . https://doi.org/10.1201/9781439823132
76. Uysal, N., Sumnu, G., & Sahin, S. (2009). Optimization of microwave–infrared roasting of hazelnut. Journal of Food Engineering , 90 (2), 255-261.
Читать дальше