NITIN KUMAR - Thermal Food Engineering Operations

Здесь есть возможность читать онлайн «NITIN KUMAR - Thermal Food Engineering Operations» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Thermal Food Engineering Operations: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Thermal Food Engineering Operations»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Thermal Food Engineering Operations
Presenting cutting-edge information on new and emerging food engineering processes,
, the first volume in the new series, “Bioprocessing in Food Science,” is an essential reference on the modeling, quality, safety, and technologies associated with food processing operations today.
This outstanding new volume:
Audience:

Thermal Food Engineering Operations — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Thermal Food Engineering Operations», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

42. Liu, Z., Qiao, L., Yang, F., Gu, H., & Yang, L. (2017). Brönsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. International Journal of Biological Macromolecules , 94 , 309-318.

43. Lind, I. (1991). The measurement and prediction of thermal properties of food during freezing and thawing - A review with particular reference to meat and dough. In Journal of Food Engineering (Vol. 13, Issue 4, pp. 285– 319). Elsevier. https://doi.org/10.1016/0260-8774(91)90048-W.

44. Lopez-Iturri, P., de Miguel-Bilbao, S., Aguirre, E., Azpilicueta, L., Falcone, F., & Ramos, V. (2015). Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels. BioMed Research International , 2015 .

45. Lung, R. B., Masanet, E., & Mckane, A. (2006). The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry. In 2006 Industrial Energy Technology ConferenceProceedings, New Orleans, LA, 05/10-11/2008 . COLLABORATION-ResourceDynamicsCorporation/ Virginia. https://digital.library.unt.edu/ark:/67531/metadc898508/.

46. Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2020). Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends in Food Science & Technology , 97 , 451-465.

47. Marszałek, K., Mitek, M., & Skąpska, S. (2015). Effect of continuous flow microwave and conventional heating on the bioactive compounds, colour, enzymes activity, microbial and sensory quality of strawberry purée. Food and Bioprocess Technology , 8 (9), 1864-1876.

48. Ma, Y., Liu, S., Wang, Y., Adhikari, S., Dempster, T. A., & Wang, Y. (2019). Direct biodiesel production from wet microalgae assisted by radio frequency heating. Fuel , 256 , 115994.

49. Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology , 91 (1), 1-8.

50. Mohammad Reza Zareifard. (2014, January). Electrical conductivity data for foods. | . Ohmic Heating in Food Processing. https://www.researchgate.net/publication/280532621_Electrical_conductivity_data_for_foods

51. Moreno-Vilet, L., Hernández-Hernández, H. M., & Villanueva-Rodríguez, S. J. (2018). Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innovative Food Science and Emerging Technologies , 50 , 196–206. https://doi.org/10.1016/j.ifset.2018.06.013.

52. Musto, M., Faraone, D., Cellini, F., & Musto, E. (2014). Changes of DNA quality and meat physicochemical properties in bovine supraspinatus muscle during microwave heating. Journal of the Science of Food and Agriculture , 94 (4), 785-791.

53. Nowak, D., & Lewicki, P. P. (2004). Infrared drying of apple slices. Innovative Food Science and Emerging Technologies , 5 (3), 353–360. https://doi.org/10.1016/j.ifset.2004.03.003

54. Ohlsson, T., & Bengtsson, N. (Eds.). (2003). Minimal processing technologies in the food industry . CRC.

55. Ozkahraman, B. C., Sumnu, G., & Sahin, S. (2016). Effect of different flours on quality of legume cakes to be baked in microwave-infrared combination oven and conventional oven. Journal of Food Science and Technology , 53 (3), 1567-1575.

56. Ozkoc, S. O., & Seyhun, N. (2015). Effect of gum type and flaxseed concentration on quality of gluten-free breads made from frozen dough baked in infrared-microwave combination oven. Food and Bioprocess Technology , 8 (12), 2500-2506.

57. Öztürk, S., Şakıyan, Ö., & Özlem Alifakı, Y. (2017). Dielectric properties and microwave and infrared-microwave combination drying characteristics of banana and kiwifruit. Journal of Food Process Engineering , 40 (3), e12502.

58. Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non- thermal technologies in food processing. Food Research International , 43 (7), 1936–1943. https://doi.org/10.1016/j.foodres.2009.09.013

59. Piyasena, P., Dussault, C., Koutchma, T., Ramaswamy, H. S., & Awuah, G. B. (2003). Radio frequency heating of foods: principles, applications and related properties—a review. Critical Reviews in Food Science and Nutrition , 43 (6), 587-606.

60. Pradeep, P., Abdullah, S. A., Choi, W., Jun, S., Oh, S., & Ko, S. (2013). Potentials of microwave heating technology for select food processing applications-a brief overview and update. Journal of Food Processing and Technology , 4 (11).

61. Priyadarshini, A., Rayaguru, K., & Nayak, P. K. (2020). Influence of Ohmic Heating on Fruits and Vegetables: A Review. Journal of Critical Reviews , 7 (19), 1952-1959.

62. Rahman, M. S. (2007). Handbook of Food Preservation. In Food Science and Technology . https://doi.org/10.1017/CBO9781107415324.004

63. Richardson, P. (2001). Thermal technologies in food processing. In Food Science and Technology . https://doi.org/10.1017/CBO9781107415324.004.

64. S.-S. Kim, D.-H. K. (2017). Synergistic effect of carvacrol and ohmic heating for inactivation of E. coli O157_H7, S. Typhimurium, L. monocytogenes , and MS-2 bacteriophage in salsa _ Elsevier Enhanced Reader.pdf. Food Control , 300–305.

65. Sensoy, I., & Sastry, S. K. (2007). Ohmic blanching of mushrooms. Journal of Food Process Engineering , 27 (1), 1–15. https://doi.org/10.1111/j.1745-4530.2004.tb00619.x.

66. Si, X., Chen, Q., Bi, J., Yi, J., Zhou, L., & Wu, X. (2016). Infrared radiation and microwave vacuum combined drying kinetics and quality of raspberry. Journal of Food Process Engineering , 39 (4), 377-390.

67. Song, Y., Wu, L., Li, N., Hu, M., & Wang, Z. (2015). Utilization of a novel microwave-assisted homogeneous ionic liquid microextraction method for the determination of Sudan dyes in red wines. Talanta , 135 , 163-169.

68. Soysal, Y., Arslan, M., & Keskin, M. (2009). Intermittent microwave-convective air drying of oregano. Food Science and Technology International , 15 (4), 397-406.

69. Ştefănoiu, G. A., Tănase, E. E., Miteluţ, A. C., & Popa, M. E. (2016). Unconventional treatments of food: Microwave vs. Radiofrequency. Agriculture and Agricultural Science Procedia , 10 , 503-510.

70. Stephen, N. M., Shakila, R. J., Jeyasekaran, G., & Sukumar, D. (2010). Effect of different types of heat processing on chemical changes in tuna. Journal of Food Science and Technology , 47 (2), 174-181.

71. Sun, D. W. (2005). Emerging technologies for food processing . Elsevier.

72. Tang, J. (2015). Unlocking Potentials of Microwaves for Food Safety and Quality. In Journal of Food Science (Vol. 80, Issue 8, pp. E1776–E1793). https://doi.org/10.1111/1750-3841.12959

73. Tao, Y., & Sun, D. W. (2015). Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition , 55 (4), 570-594.

74. Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics , 10 (1), 1-11.

75. Thomas Ohlsson and Nils Bengtsson. (2002). Minimal Processing Technologies in the Food Industry. In Minimal Processing Technologies in the Food Industry . https://doi.org/10.1201/9781439823132

76. Uysal, N., Sumnu, G., & Sahin, S. (2009). Optimization of microwave–infrared roasting of hazelnut. Journal of Food Engineering , 90 (2), 255-261.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Thermal Food Engineering Operations»

Представляем Вашему вниманию похожие книги на «Thermal Food Engineering Operations» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Thermal Food Engineering Operations»

Обсуждение, отзывы о книге «Thermal Food Engineering Operations» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x