Biomolecules from Natural Sources

Здесь есть возможность читать онлайн «Biomolecules from Natural Sources» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biomolecules from Natural Sources: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biomolecules from Natural Sources»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Biomolecules from Natural Sources
An up-to-date exploration of new and novel biomolecules Biomolecules from Natural Sources: Advances and Applications,
Biomolecules from Natural Sources: Advances and Applications
Natural Sources: Advances and Applications

Biomolecules from Natural Sources — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biomolecules from Natural Sources», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

95 95 Kendrew, J., Bodo, G., Dintzis, H., Parrish, R., Wyckoff, H., and Phillips, D. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181 (4610): 662–666.

96 96 Goodenough, P.W. (1995). A review of protein engineeringfor the food industry. Molecular Biotechnology 4: 151–166.

97 97 Crisman, R.L. and Randolph, T.W. (2009). Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures. Biotechnology and Bioengineering 102 (2): 483–492.

98 98 Amara, A.A. (2015). An overview of the molecular and cellular interactions of some bioactive compounds. In: Biotechnology of Bioactive Compounds (ed. V.K. Gupta and M.G. Tuohy, co-ed. A. O’Donovan and M. Lohani), 527–554. John Wiley & Sons, Ltd.

99 99 Runbingh, D.N. (1997). Protein Engineering from a bioindustrial point of view. Current Opinion in Biotechnology 8: 417–422.

100 100 Schäfer, T., Kirk, O., Borchert, T.V., Fuglsang, C.C., Pedersen, S., Salmon, S., Olsen, H.S., Deinhammer, R., and Lund, H. (2002). Enzymes for technical applications. In: Biopolymers Online (ed. R. Fahnestock and S.R. Steinbüchel), 377–437. Wiley VCH.

101 101 Rao, M.B., Tanksale, A.M., Ghatge, M.S., and Deshpande, V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62 (3): 597–635.

102 102 Mozhaev, V.V. (1993). Mechanism-based strategies for protein thermostabilization. Trends in Biotechnology 11 (3): 88–95.

103 103 Krahe, M., Antranikian, G., and Mãrkl, H. (1996). Fermentation of extremophilic microorganisms. FEMS Microbiology Reviews 18 (2–3): 271–285.

104 104 Adams, M.W.W. and Kelly, R.M. (1998). Finding and using hyperthermophilic enzymes. Trends in Biotechnology 16 (8): 329–332.

105 105 Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews 63 (4): 735–750.

106 106 Strausberg, S.L., Alexander, P.A., Gallagher, D.T., Gilliland, G.L., Barnett, B.L., and Bryan, P.N. (1995). Directed evolution of a subtilisin with calcium-independent stability. Nature Biotechnology 13 (7): 669–673.

107 107 Van Dyke, M.I., Lee, H., and Trevors, J.T. (1991). Applications of microbial surfactants. Biotechnology Advances 9 (2): 241–252.

108 108 Beer, H.D., Wohlfahrt, G., McCarthy, J.E.G., Schomburg, D., and Schmid, R.D. (1996). Analysis of the catalyic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Engineering, Design and Selection 9 (6): 507–517.

109 109 Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L., and Menge, U. (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343 (6260): 767–770.

110 110 Martinelle, M., Holmquist, M., Clausen, I.G., Patkar, S., Svendsen, A., and Hult, K. (1996). The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. Protein Engineering, Design and Selection 9 (6): 519–524.

111 111 Rubingh, D.N. (1996). The influence of surfactants on enzyme activity. Current Opinion in Colloid & Interface Science 1 (5): 598–603.

112 112 Rubingh, D.N. (1997). Protein engineering from a bioindustrial point of view. Current Opinion in Biotechnology 8 (4): 417–422.

113 113 Shak, S., Capon, D.J., Hellmiss, R., Marsters, S.A., and Baker, C.L. (1990). Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proceedings of the National Academy of Sciences 87 (23): 9188–9192.

114 114 Breedveld, F.C. (2000). Therapeutic monoclonal antibodies. The Lancet 355 (9205): 735–740.

115 115 Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321 (6069): 522–525.

116 116 Whittingham, J.L., Havelund, S., and Jonassen, I. (1997). Crystal structure of a prolonged-acting insulin with albumin-binding properties. Biochemistry 36 (10): 2826–2831.

117 117 Branningan, J.A. and Wilkinson, A.J. (2002). Protein engineering 20 years on. Nature Reviews Molecular Cell Biology 3: 964–970.

118 118 Baspinar, B. and Yardimci, H. (2020). Gluten-free casein-free diet for autism spectrum disorders: can it be effective in solving behavioural and gastrointestinal problems? Eurasian Journal of Medicine 52 (3): 292–297.

119 119 Jahromi, M., Niakousari, M., Golmakani, M.T., and Mohammadifar, M.A. (2020). Physicochemical and structural characterization of sodium caseinate based film-forming solutions and edible films as affected by high methoxyl pectin. International Journal of Biological Macromolecules 165 (Pt B): 1949–1959.

120 120 Pan, X., Mu, M., Hu, B., Yao, P., and Jiang, M. (2005). Micellization of casein-graft-dextran copolymer prepared through Maillard reaction. Biopolymers 81 (1): 29–38.

121 121 Nash, W., Pinder, D.N., Hemar, Y., and Singh, H. (2002). Dynamic light scattering investigation of sodium caseinate and xanthan mixtures. International Journal of Biological Macromolecules 30 (5): 269–271.

122 122 Polari, L., Alam, C.M., Nystrom, J.H., Heikkila, T., Tayyab, M., Baghestani, S., and Toivola, D.M. (2020). Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. International Journal of Biochemistry & Cell Biology 129: 105878.

123 123 Di Foggia, M., Boga, C., Micheletti, G., Nocentini, B., and Taddei, P. (2021). Structural investigation on damaged hair keratin treated with alpha,beta-unsaturated Michael acceptors used as repairing agents. International Journal of Biological Macromolecules 167: 620–632.

124 124 Zahara, I., Arshad, M., Naeth, M.A., Siddique, T., and Ullah, A. (2021). Feather keratin derived sorbents for the treatment of wastewater produced during energy generation processes. Chemosphere 273: 128545.

125 125 Li, L., Yang, H., Li, X., Yan, S., Xu, A., You, R., and Zhang, Q. (2021). Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites. Carbohydrate Polymers 253: 117214.

126 126 Battampara, P., Nimisha Sathish, T., Reddy, R., Guna, V., Nagananda, G.S., Reddy, N., Ramesha, B.S., Maharaddi, V.H., Rao, A.P., Ravikumar, H.N., Biradar, A., and Radhakrishna, P.G. (2020). Properties of chitin and chitosan extracted from silkworm pupae and egg shells. International Journal of Biological Macromolecules 161: 1296–1304.

127 127 Cabana, F. and Tay, C. (2020). The addition of soil and chitin into Sunda pangolin (Manis javanica) diets affect digestibility, faecal scoring, mean retention time and body weight. Zoo Biology 39 (1): 29–36.

128 128 Asapur, P., Mahapatra, S.K., and Banerjee, I. (2020). Secondary structural analysis of non-mulberry silk fibroin nanoparticles synthesized by using microwave and acetone method. Journal of Biomolecular Structure and Dynamics 4: 1–10.

129 129 Aparicio-Rojas, G.M., Medina-Vargas, G., and Diaz-Puentes, E. (2020). Thermal, structural and mechanical characterization of Nephila clavipes spider silk in southwest Colombia. Heliyon 6 (11): e05262.

130 130 Fernandez-Saiz, P., Lagaron, J.M., Hernandez-Muñoz, P., and Ocio, M.J. (2008). Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications. International Journal of Food Microbiology 124 (1): 13–20.

131 131 Mariod, A.A. and Fadul, H. (2013). Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making. Food Science and Technology International 21 (5): 380–391.

132 132 Selvakumar, G. and Lonchin, S. (2020). Fabrication and characterization of collagen-oxidized pullulan scaffold for biomedical applications. International Journal of Biological Macromolecules 164: 1592–1599.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biomolecules from Natural Sources»

Представляем Вашему вниманию похожие книги на «Biomolecules from Natural Sources» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biomolecules from Natural Sources»

Обсуждение, отзывы о книге «Biomolecules from Natural Sources» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x