Peyrard, D., Delmotte, S., Sauvage, S., Namour, P., Gerino, M., Vervier, P., Sanchez-Perez, J.M., Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: A combined modelling and field study. Phys. Chem. Earth , 36, 12, 599–611, 2011, doi: 10.1016/j.pce.2011.05.003.
Pi, N., Ng, J.Z., Kelly, B.C., Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and. Eichhornia crassipes. Sci. Total Environ. , 601, 812–820, 2017, doi: 10.1016/j. scitotenv.2017.05.137.
Polechonska, L., Klink, A., Dambiec, M., Trace element accumulation in Salvinia natans from areas of various land use types. Environ. Sci. Pollut. Res. , 26, 29, 30242–30251, 2019, doi: 10.1007/s11356-019-06189-5.
Polechonska, L., Klink, A., Dambiec, M., Rudecki, A., Evaluation of Ceratophyllum demersum as the accumulative bioindicator for trace metals. Ecol. Indic. , 93, 274–281, 2018, doi: 10.1016/j.ecolind.2018.05.020.
pole-zhi.org, La zone libellule : utiliser les zones humides pour , réduire les nouveaux polluants Association française des Etablissements Publics Territoriaux de Bassin (AFEPTB, Paris (France, 2013, http://www.pole-zhi.org/la-zonelibellule-utiliser-les-zones-humides-pour-reduire-les-nouveaux-polluants.
Prajapati, M., van Bruggen, J.J.A., Dalu, T., Malla, R., Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for waste-water treatment. Appl. Water Sci. , 7, 8, 4801–4809, 2017, doi: 10.1007/ s13201-017-0625-2.
Prasad, M., Aquatic Plants for Phytotechnology, in: Environmental Bioremediation Technologies , Singh, S.N. , Tripathi, R.D. (Eds.), Springer, Berlin, Heidelberg, 2007, doi: 10.1007/978-3-540-34793-4_11.
Prasetya, A., Prihutami, P., Warisaura, A.D., Fahrurrozi, M., Petrus, H., Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. J. Environ. Chem. Eng. , 8, 3, 8, 2020, doi: 10.1016/j.jece.2020.103781.
Qu, X., Vavilin, V.A., Mazeas, L., Lemunier, M., Duquennoi, C., He, P.J., Bouchez, T., Anaerobic biodegradation of cellulosic material: Batch experiments and modelling based on isotopic data and focusing on aceticlastic and nonaceticlastic methanogenesis. Waste Manage. , 29, 6, 1828–1837, 2009, doi: 10.1016/j.wasman.2008.12.008.
Quejigo, J.R., Domínguez-Garay, A., Dörfler, U., Schroll, R., Esteve-Núñez, A., Anodic shifting of the microbial community profile to enhance oxidative metabolism in soil. Soil Biol. Biochem. , 116, 131–138, 2018, doi: 10.1016/j. soilbio.2017.09.012.
Raskin, I., Kumar, P.B.A.N., Dushenkov, S., Salt, D.E., Bioconcentration of heavy metals by plants. Curr. Opin. Biotechnol. , 5, 3, 285–290, 1994, doi: 10.1016/0958-1669(94)90030-2.
Raven, J.A., Aquatic viruses: the emerging story. J. Mar. Biolog. Assoc. U.K. , 86, 449–451, 2006, doi: 10.1017/S0025315406013348.
Ray, C., Grischek, T., Schubert, J., Wang, J.Z., Speth, T.F., A Perspective of Riverbank Filtration. J. AWWA , 94, 4, 149–160, 2002, doi: 10.1002/j.1551-8833.2002. tb09459.x.
Reddy, K.R., Cameselle, C., Electrochemical Remediation Technologies for Polluted Soils , Sediments and Groundwater, John Wiley & Sons, Hoboken, New Jersey, 2009.
Reddy, K.R., Tucker, J.C., Productivity and nutrient uptake of water hyacinth, Eichhornia crassipes I. Effect of nitrogen source. Econ. Bot. , 37, 2, 237–247, 1983, doi: 10.1007/BF02858790.
Reed, S.C., Clearinghouse, N.S.F., Subsurface Flow Constructed Wetlands for Wastewater Treatment: A Technology Assessment , U.S. Environmental Protection Agency, Office of Water, 1993.
Rehman, K., Ijaz, A., Arslan, M., Afzal, M., Floating treatment wetlands as biological buoyant filters for wastewater reclamation. Int. J. Phytoremediation , 21, 13, 1273–1289, 2019, doi: 10.1080/15226514.2019.1633253.
Ren, Z.Y., Yan, H.J., Wang, W., Mench, M.M., Regan, J.M., Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales. Environ. Sci. Technol. , 45, 6, 2435–2441, 2011, doi: 10.1021/es103115a.
Rizzo, A., Tondera, K., Pálfy, T.G., Dittmer, U., Meyer, D., Schreiber, C., Zacharias, N., Ruppelt, J.P., Esser, D., Molle, P., Troesch, S., Masi, F., Constructed wetlands for combined sewer overflow treatment: A state-of-the-art review. Sci. Total Environ. , 727, 138618, 2020, doi: 10.1016/j.scitotenv.2020.138618.
Rodrigo, M.A., Oturan, N., Oturan, M.A., Electrochemically Assisted Remediation of Pesticides in Soils and Water: A Review. Chem. Rev. , 114, 17, 8720–8745, 2014, doi: 10.1021/cr500077e.
Roels, J., Verstraete, W., Biological formation of volatile phosphorus compounds. Bioresour. Technol. , 79, 3, 243–250, 2001, doi: 10.1016/ S0960-8524(01)00032-3.
Ruiz-Martinez, A., Martin Garcia, N., Romero, I., Seco, A., Ferrer, J., Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour. Technol. , 126, 247–253, 2012, doi: 10.1016/j. biortech.2012.09.022.
Rulkens, W.H., Tichy, R., Grotenhuis, J.T.C., Remediation of polluted soil and sediment: perspectives and failures. Water Sci. Technol. , 37, 8, 27–35, 1998, doi: 10.1016/S0273-1223(98)00232-7.
Ryckelynck, N., Stecher, H.A., & Reimers, C.E., Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Biogeochemistry , 76, 1, 113–139, 2005, doi: 10.1007/ s10533-005-2671-3.
Saberioon, M., Brom, J., Nedbal, V., Souc̆ek, P., Císar̆, P., Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland water. Ecol. Indic. , 113, 106236, 2020, doi: 10.1016/j. ecolind.2020.106236.
Saleh, H.M., Moussa, H.R., Mahmoud, H.H., El-Saied, F.A., Dawoud, M., Wahed, R.S.A., Potential of the submerged plant Myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Prog. Nucl. Energy , 118, 11, 2020, doi: 10.1016/j. pnucene.2019.103147.
Salt, D.E., Smith, R.D., Raskin, I., Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. , 49, 1, 643–668, 1998, doi: 10.1146/annurev.arplant.49.1.643.
Sanchez, O., Constructed Wetlands Revisited: Microbial Diversity in the -omics Era. Microb. Ecol. , 73, 3, 722–733, 2017, doi: 10.1007/s00248-016-0881-y.
Sangely, M., Dégradation biologique des polychlorobiphényles , p. 246, Institut National Polytechnique de Toulouse. PhD thesis, Université de Toulouse, Toulouse, 2010.
Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I., Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources , 356, 225–244, 2017, doi: 10.1016/j.jpowsour.2017.03.109.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi, S., Jackson, R.B., Alexe, M., Arora, V.K., Beerling, D.J., Bergamaschi, P., Blake, D.R., Brailsford, G., Brovkin, V. et al. , The global methane budget 2000-2012. Earth Syst. Sci. Data , 8, 2, 697– 751, 2016, doi: 10.5194/essd-8-697-2016.
Schievano, A., Colombo, A., Grattieri, M., Trasatti, S.P., Liberale, A., Tremolada, P., Pino, C., Cristiani, P., Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. J. Power Sources , 340, 80–88, 2017, doi: 10.1016/j.jpowsour.2016.11.037.
Читать дальше