George V. Chilingar - Acoustic and Vibrational Enhanced Oil Recovery

Здесь есть возможность читать онлайн «George V. Chilingar - Acoustic and Vibrational Enhanced Oil Recovery» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Acoustic and Vibrational Enhanced Oil Recovery: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Acoustic and Vibrational Enhanced Oil Recovery»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ACOUSTIC AND VIBRATIONAL ENHANCED OIL RECOVERY
Oil and gas is still a major energy source all over the world, and techniques like these, which are more environmentally friendly and inexpensive than many previous development and production technologies, are important for making fossil fuels more sustainable and less hazardous to the environment. Based on research they did in the 1970s in Russia and the United States, the authors discovered that oil rate production increased noticeably several days after the occurrence of an earthquake when the epicenter of the earthquake was located in the vicinity of the oil producing field. The increase in oil flow remained higher for a considerable period of time, and it led to a decade-long study both in the Russia and the US, which gradually focused on the use of acoustic/vibrational energy for enhanced oil recovery after reservoirs waterflooded. In the 1980s, they noticed in soil remediation studies that sonic energy applied to soil increases the rate of hydrocarbon removal and decreases the percentage of residual hydrocarbons. In the past several decades, the use of various seismic vibration techniques have been used in various countries and have resulted in incremental oil production. This outstanding new volume validates results of vibro-stimulation tests for enhanced oil recovery, using powerful surface-based vibro-seismic sources. It proves that the rate of displacement of oil by water increases and the percentage of nonrecoverable residual oil decreases if vibro-energy is applied to the porous medium containing oil. Audience:
Petroleum

Acoustic and Vibrational Enhanced Oil Recovery — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Acoustic and Vibrational Enhanced Oil Recovery», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

If the fracture surface is making random periodic vibrations in two mutually perpendicular directions in two mutually perpendicular directions lying on its surface, the liquid velocity in each of these directions are determined independent from one another. But, the aforementioned qualitative patterns remain valid. In particular, if periods of mutually perpendicular vibrations coincide, then the liquid particles’ trajectories at a sufficient distance from the fracture surface approach ellipses, and the size of these ellipses is exponentially declining. In a case when periods are substantially different, the liquid motion at distancing from the fracture surface approaches rectilinear harmonic vibrations coinciding in the direction and frequency with longer period vibrations. In a manner of speaking, the liquid layer has properties of a high frequency filter.

The quoted results are comparable with the solution of a problem of fading the agitations caused by a spherical fractured surface in the process of its harmonic vibrations along some direction in an incompressible liquid.

For instance, we will review for a case of Reynolds’ small numbers a spherical surface within which 95% of the total energy loss in a viscous incompressible liquid is dispersed ( Figure 2.4a). Assume that R 0is radius of vibration penetration and r 0is radius of the spherical surface. Then, the value δ = R 0− r 0may be considered the appropriate depth of vibrations’ penetration into the liquid. Then, correlation δ = R 0− r 0may be treated as the appropriate depth of vibrations’ penetration into the liquid. For the correlation δ / r 0vs. the parameter Acoustic and Vibrational Enhanced Oil Recovery - изображение 59we obtain a solid line diagram in Figure 2.4b. At that, Acoustic and Vibrational Enhanced Oil Recovery - изображение 60is the same value with the dimension of length as in Equation (2.27). The same diagram within the considered limits of β variation may be approximated as follows:

(2.28) dashed line in Figure 23 Upon reducing by r 0 this equality is exactly - фото 61

(dashed line in Figure 2.3). Upon reducing by r 0, this equality is exactly equal to (2.27).

Thus, there is practically total coincidence of the results for a case of the flat and spherical fracture surfaces’ vibrations. The study result is also close if the agitation area from the spherical surface is defined not by the energy dissipation, but by leveling of the pressure field or by fading of the velocity field as it has been done for a case of a flat fracture. The agitation zone in the case of a spherical surface’s incremental advance in a viscous liquid under the problem’s conditions is by an order of magnitude greater in size than in the case of its vibration. This conclusion is in the qualitative agreement with correlations of Equations (2.27)and (2.28), which indicate an expansion of the agitation zone with the decline in the vibration frequency.

In conclusion, one may note that under the assumption of incompressibility of liquids, a case of lateral fracture surface vibrations is trivial as the liquid vibrates in this direction together with the fracture surface. If compressibility is present, then the process is described by a wave equation which includes an addend accounting for the dissipation of the vibration energy.

Figure 24 Vibration in a liquid volume at progressive vibrations of the - фото 62

Figure 2.4 Vibration in a liquid volume at progressive vibrations of the fracture’s spherical surface.

Figure 25 Schematic advance of a mixture of a wetting and nonwetting liquids - фото 63

Figure 2.5 Schematic advance of a mixture of a wetting and nonwetting liquids in a unit pore volume in a field of elastic vibrations. A rand A aare the relative and absolute displacement amplitudes of the nonwetting liquid; ε rand ε aare the relative and absolutes dislocations.

In the case of pore volume filled up with a wetting liquid with floating droplets of nonwetting liquid, the vibration penetration depth may be estimated treating the mixture equivalent to some liquid with viscosity greater than that of the wetting liquid with droplets of a nonwetting liquid. In order to estimate the absolute and relative amplitudes of displacements, force, and energy expense needed for providing vibrations in a reservoir, we will review a unit pore volume restricted by the rock matrix. Let us assume that a selected volume is filled up with a wetting liquid with floating droplets of a non-moisturizing liquid. To this volume are applied harmonic vibrations with a frequency ω with the maximum displacement amplitude A ( Figure 2.5). Walls of the pore volume and the wetting liquid are vibrating in phase, coherently with the displacement amplitude:

Acoustic and Vibrational Enhanced Oil Recovery - изображение 64

where t is the vibration time.

The simplest case is with nonwetting liquid droplets being balls of equal diameter d = 2 r suspended in the wetting liquid and the volume concentration C within the study volume of no greater than 5%. It such a case, the distances between the droplets are greater than 2 or 3 their diameters and their mutual influence may be disregarded. On assuming further that the Reynolds’ acoustic numbers are much smaller than a unit:

Acoustic and Vibrational Enhanced Oil Recovery - изображение 65

here, ν is the kinematic viscosity of the wetting liquid.

A solution for the nonwetting liquid displacement amplitude relative to the surrounding wetting liquid is [6]:

Acoustic and Vibrational Enhanced Oil Recovery - изображение 66

and the absolute amplitude of the displacement is

Acoustic and Vibrational Enhanced Oil Recovery - изображение 67

The force F needed for the occurrence of harmonic vibrations of such unit volume is:

Acoustic and Vibrational Enhanced Oil Recovery - изображение 68

where

ρ = ρ s− ρ ′ is the effective density of liquids’ mixture at vibration;

ρ s= ρ e(1 − C ) + n= ρ c[1 + C (Δ − 1)] is the static mixture density;

is the effective vibration damping factor Δ ρ n ρ cis the density ratio of - фото 69

is the effective vibration damping factor Δ ρ n ρ cis the density ratio of - фото 70is the effective vibration damping factor;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Acoustic and Vibrational Enhanced Oil Recovery»

Представляем Вашему вниманию похожие книги на «Acoustic and Vibrational Enhanced Oil Recovery» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Acoustic and Vibrational Enhanced Oil Recovery»

Обсуждение, отзывы о книге «Acoustic and Vibrational Enhanced Oil Recovery» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x