George V. Chilingar - Acoustic and Vibrational Enhanced Oil Recovery

Здесь есть возможность читать онлайн «George V. Chilingar - Acoustic and Vibrational Enhanced Oil Recovery» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Acoustic and Vibrational Enhanced Oil Recovery: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Acoustic and Vibrational Enhanced Oil Recovery»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ACOUSTIC AND VIBRATIONAL ENHANCED OIL RECOVERY
Oil and gas is still a major energy source all over the world, and techniques like these, which are more environmentally friendly and inexpensive than many previous development and production technologies, are important for making fossil fuels more sustainable and less hazardous to the environment. Based on research they did in the 1970s in Russia and the United States, the authors discovered that oil rate production increased noticeably several days after the occurrence of an earthquake when the epicenter of the earthquake was located in the vicinity of the oil producing field. The increase in oil flow remained higher for a considerable period of time, and it led to a decade-long study both in the Russia and the US, which gradually focused on the use of acoustic/vibrational energy for enhanced oil recovery after reservoirs waterflooded. In the 1980s, they noticed in soil remediation studies that sonic energy applied to soil increases the rate of hydrocarbon removal and decreases the percentage of residual hydrocarbons. In the past several decades, the use of various seismic vibration techniques have been used in various countries and have resulted in incremental oil production. This outstanding new volume validates results of vibro-stimulation tests for enhanced oil recovery, using powerful surface-based vibro-seismic sources. It proves that the rate of displacement of oil by water increases and the percentage of nonrecoverable residual oil decreases if vibro-energy is applied to the porous medium containing oil. Audience:
Petroleum

Acoustic and Vibrational Enhanced Oil Recovery — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Acoustic and Vibrational Enhanced Oil Recovery», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The maximum amplitude of relative migrations close to the amplitude of absolute surface vibrations occurs at a sufficiently large value of acceleration 2, when particles of an unconsolidated reservoir remain practically immobile in space.

A case of rectilinear extensional vibration of the surface displays the same patterns of vibration penetration as the considered case of circular vibrations. Solution of the problem here is more complex than in the case of circular vibration, especially for the second model, because the particle motion occurs with two long or instantaneous stops in each vibration period [5].

A different situation occurs with the vibration penetration process in individual reservoir layers in a case of transverse surface vibration of one of the layers. Experimental data indicate exponential nature of particles’ vibration amplitude decline with certain distance from the vibrating surface of one of the layers. Let us denote v a pulsating component of the reservoir particle velocity and introduce a function

Acoustic and Vibrational Enhanced Oil Recovery - изображение 82

where R is the velocity recovery factor at a strike, and V 0is some characteristic velocity value. This function will satisfy equation of heat conductivity type equation, i.e., will play the role of quasi-temperature [9]. Figure 2.6shows diagrams of the function U x/ U 0at various values of the recovery factor R . Fading of the velocity of reservoir particles has exponential nature, which agrees with the above mentioned experimental results.

Figure 26 Velocity distribution in unconsolidated reservoir at transverse - фото 83

Figure 2.6 Velocity distribution in unconsolidated reservoir at transverse vibrations of its confining surface.

Certain specificity is typical of the vibration penetration dynamics in the cement grouts. The cement grouts are a multi-component medium composed of large and small filling aggregate, cohesive material, and water especially selected by the composition. In the process of mixture preparation, air unavoidably is getting into it. The amount of air in the mixture is relatively small (and is changing in the preparation process). Physicomechanical properties of the mixture and of the solidified cement substantially depend on its contents. As result, there is a rather complex rheological property of the cement mixture. Most important among them are resistance of a dry friction type and also the viscous friction and elasticity (the elasticity is mostly defined by the presence of air component). The vibration causes transformation of the mixture rheological parameters and properties, in particular, its pseudo-fluidization, which provides for the efficient compaction necessary for obtaining a cement with high strength parameters. For this reason, the cement mixture is modeled in theoretical studies as a continuous medium with elastic, plastic, and viscous properties.

2.4 Excitation of Vibration in Oil Reservoirs

Vibration excitation in oil reservoirs is best studied in cases of power load application directly to the land surface. It is implemented for a directional vibroseismic action on shallow oil accumulations and for a solution of seismic exploration tasks. Of greatest interest are issues of coordinating the sources with the medium from a point of view of the best transformation of the source power in the power of irradiated waves. Reviewed have been the models of spherical sources and sources distributed over the surface of elastic half-space [25]. A solution of the problem of creating efficient method of forming highly directional radiation suggests that the use of acoustic antenna theory constructed for ideal uniform acoustic medium in a case of stratified media results in significant errors. Taking into account vertical nonuniformity of the medium plays an important role for obtaining acceptable practical results. Distribution studies of energy supply arriving in multilayer elastic half-space from a harmonic surface power loading established that, in the multilayer half-space, may exist the frequency range wherein emerge reflected waves with the opposite direction of phase and group velocities.

An analysis of energy flow lines, which may be strongly involuted up to generating the areas where energy is circulating on closed trajectories, indicated the following. In the vicinity of resonance frequencies, the power flow of these internal circular flows may substantially exceed the flow coming from the source. This indicates a possibility of a vibration source energy accumulation with an unlimited amplitude increase in certain areas of semi-infinite laminated space. In these studies, the actual rocks have been modeled by an elastic medium. The solutions of dynamic problems for elastoporous media are known where, applying the Frenkel-Bio equations was conducted an analysis of the wave field excitation by a load varying in time according to the harmonic law. At that, the excited field energy distribution by the wave type has been estimated.

Similar tasks related to the half-space force excitement had a practical value for selecting efficient vibroseismic action regimes on shallow oil reservoirs using powerful surficial vibration sources developing force up to 10 6H.

The energy transfer processes from well to a reservoir are associated with substantial difficulties. These difficulties are associated with well geometry and paucity of a well as an irradiator compared with the excited wave length. If a source is creating vibration in the well fluid, then the field generated in the surrounding reservoir is equivalent to the field of an infinitely long cylinder on the surface of which one of possible is excited vibration modes. In this case, a solution of the wave equation is

Acoustic and Vibrational Enhanced Oil Recovery - изображение 84

where Acoustic and Vibrational Enhanced Oil Recovery - изображение 85and картинка 86are Hankel functions of the first and second kind, m = k y R c; R cis the well radius; k r, k y, and k zare wave numbers.

The first term in this equation corresponds to a wave converging to the cylinder axis, and the second term corresponds to the wave expanding from the cylinder. For the expanding running waves, the k rnumber must be a real value, i.e., the condition картинка 87must be observed. If kk r, then k ris a purely imaginary value, and in such a case, the field sharply exponentially declining with distancing from the cylinder surface. No irradiation occurs in such a case. The length of a flexural wave in the axial direction turns out smaller than a sound wave in the encircling medium regardless of another wave number k y= m/R e, which corresponds to the circular system of nodal lines. If we introduce the angle θ = arcsin ( ξ/k ), k = ωR e /c as the incidence angle or reflection angle of cylindrical wave, normal or modulated by front, then at incidence angles smaller than θ 1= arcsin( c/ c p), the energy enters the reservoir, and at the angle larger than θ 1, it returns in the well for forming head-waves in the liquid. Within the angle range between a critical value θ 1to the second critical value θ 2= arcsin( c/c s), the energy flow into the medium is caused only by irradiation of the shear waves. At high frequencies, such that картинка 88we have cos θ ≈ 1, and the waves irradiated by the cylinder spread perpendicular to its surface. With the k decline, the θ angle is increasing, and at k = k z, the wave is spreading only tangentially to the cylinder’s surface. As soon as the axial flexural wave length becomes shorter than the sound wave length in the enclosing medium, appropriately k becomes smaller than k z, and the cylinder-well is not radiating in the enclosing medium at all. Irradiation in a case картинка 89is studied in great detail, the results are practically applied in geophysical acoustic studies in wells and at high-frequency thermoacoustic action on the reservoir’s bottomhole zone.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Acoustic and Vibrational Enhanced Oil Recovery»

Представляем Вашему вниманию похожие книги на «Acoustic and Vibrational Enhanced Oil Recovery» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Acoustic and Vibrational Enhanced Oil Recovery»

Обсуждение, отзывы о книге «Acoustic and Vibrational Enhanced Oil Recovery» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x