George V. Chilingar - Acoustic and Vibrational Enhanced Oil Recovery

Здесь есть возможность читать онлайн «George V. Chilingar - Acoustic and Vibrational Enhanced Oil Recovery» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Acoustic and Vibrational Enhanced Oil Recovery: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Acoustic and Vibrational Enhanced Oil Recovery»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

ACOUSTIC AND VIBRATIONAL ENHANCED OIL RECOVERY
Oil and gas is still a major energy source all over the world, and techniques like these, which are more environmentally friendly and inexpensive than many previous development and production technologies, are important for making fossil fuels more sustainable and less hazardous to the environment. Based on research they did in the 1970s in Russia and the United States, the authors discovered that oil rate production increased noticeably several days after the occurrence of an earthquake when the epicenter of the earthquake was located in the vicinity of the oil producing field. The increase in oil flow remained higher for a considerable period of time, and it led to a decade-long study both in the Russia and the US, which gradually focused on the use of acoustic/vibrational energy for enhanced oil recovery after reservoirs waterflooded. In the 1980s, they noticed in soil remediation studies that sonic energy applied to soil increases the rate of hydrocarbon removal and decreases the percentage of residual hydrocarbons. In the past several decades, the use of various seismic vibration techniques have been used in various countries and have resulted in incremental oil production. This outstanding new volume validates results of vibro-stimulation tests for enhanced oil recovery, using powerful surface-based vibro-seismic sources. It proves that the rate of displacement of oil by water increases and the percentage of nonrecoverable residual oil decreases if vibro-energy is applied to the porous medium containing oil. Audience:
Petroleum

Acoustic and Vibrational Enhanced Oil Recovery — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Acoustic and Vibrational Enhanced Oil Recovery», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where the function ( ζ ) may be represented through an inverse Laplace transform:

(2.7) Its expansion in a series is 28 where H ζ is Heaviside step function - фото 20

Its expansion in a series is

(2.8) where H ζ is Heaviside step function In a special case at α ½ the - фото 21

where H ( ζ ) is Heaviside step function. In a special case at α = ½, the series (2.8)converges to

(2.9) Due to nonuniform convergence of the series Equation 28 may also be found - фото 22

Due to nonuniform convergence of the series Equation (2.8), may also be found asymptotic formula for f α( ζ ). It is determined using the saddle point method:

(2.10) This correlation becomes equal to the exact expression Equation 29at α - фото 23

This correlation becomes equal to the exact expression Equation (2.9)at α = 1/2.

The function f α( ζ ) defined by the equality Equation (2.7)converges to δ ( ζ ) at λ → 0. There is the equivalent representation of the last term in expression Equation (2.6)for cores of Equation (2.3)type. The packing φ α( ζ )* f α( ζ ) may be computed explicitly for this case and the left part of Equation (2.6)may then be written in a form more convenient for computation as it no longer includes the second integral. The function t = (| x | + τ | x |) is smooth and is faster tending to zero with the approach to the front corresponding to τ = 0 than nay power of τ, remaining infinitely differentiable which is obvious from (2.10).

The trivariate Green function for the medium model under review represents a solution of the spherically symmetric Cauchy problem [30]:

(2.11) Acoustic and Vibrational Enhanced Oil Recovery - изображение 24

(2.12) Acoustic and Vibrational Enhanced Oil Recovery - изображение 25

where Acoustic and Vibrational Enhanced Oil Recovery - изображение 26

The solution of Equations (2.11)and (2.12)has the following format:

(2.13) where it is assumed that 214 The Greens function 213behind the front - фото 27

where it is assumed that

(2.14) The Greens function 213behind the front τ αr as presented in - фото 28

The Green’s function (2.13)behind the front ( τ ˂˂ αr ) as presented in space-time has the following format:

(2.15) Acoustic and Vibrational Enhanced Oil Recovery - изображение 29

According to the theory of generalized functions, Acoustic and Vibrational Enhanced Oil Recovery - изображение 30tends to δ ( τ )/2 at λ → 0. The Green function G α( t,r ) shown in Equation (2.15)converges in this case to a simple Green function of the classical wave differential equation, i.e., to The solution at α 12 may be presented in a simple explicit format 216 - фото 31. The solution at α = 1/2 may be presented in a simple explicit format:

(2.16) where 217 218 219 - фото 32

where

(2.17) 218 219 As two independent polarization - фото 33

(2.18) 219 As two independent polarization types are available in a solid - фото 34

(2.19) As two independent polarization types are available in a solid isotropic - фото 35

As two independent polarization types are available in a solid isotropic medium, the total displacement vector u( r,t ) should be presented in the form of in-plane u land lateral u rdisplacements:

(2.20) Acoustic and Vibrational Enhanced Oil Recovery - изображение 36

Each of these displacements may be directed by integrodifferential equation of Equation (2.11)type but with different multiplier before the terms including time derivatives due to the differences in the high frequency sound velocity limit for these two wave types. The integral terms creep cores also differ (displacement creep function and triaxial creep function). However, their time correlation is identical if identical processes lead to local relaxation. For this reason, the methods designed for scalar equations may be applied with every scalar component of every polarization displacement vector simply by scaling the derived solutions.

2.2 Effect on the Wave Spread in the Oil Accumulations by the Geologic-Geophysical Conditions

As an indicator of efficiency at a certain frequency may serve encompassment radius within which are maintained certain interrelations between the threshold values of vibration parameters—vibratory displacements ξ and vibratory accelerations These parameters are determined from the density of vibratory energy flow E - фото 37. These parameters are determined from the density of vibratory energy flow E at a given point of the medium and through vibration frequency f as follows:

where ρC is the wave resistance or acoustic impedance of the medium Numerical - фото 38

where ρC is the wave resistance or acoustic impedance of the medium.

Numerical modeling was conducted by Sherifulling et al . [26] in order to determine the vibrations’ space-energy distribution. This enabled the computation of the energy picture of the wave distribution field for the assigned vibration frequency and of the vibratory accelerations and offsets field in the reservoir accounting for petro-physical properties of the top and base of the reservoir. Modeling was conducted using a method of the wave spreading statistical testing in the plane dissecting the reservoir with the plane-parallel boundaries [20]. The source of harmonic waves was distributed along the circumference of a well with the radius R cwith the center in the origin. The top and base of a reservoir having thickness H was positioned parallel to the X axis. At calculating by the statistical testing method, the spreading of the low-frequency harmonic waves is modeled using acoustic “quanta” flying out from the source in a random direction. Acoustic energy is assigned to each “quantum”, the energy equal to surficial density of a cylindric pulsator with the pressure amplitude P 0:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Acoustic and Vibrational Enhanced Oil Recovery»

Представляем Вашему вниманию похожие книги на «Acoustic and Vibrational Enhanced Oil Recovery» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Acoustic and Vibrational Enhanced Oil Recovery»

Обсуждение, отзывы о книге «Acoustic and Vibrational Enhanced Oil Recovery» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x