Stephen J. Mildenhall - Pricing Insurance Risk

Здесь есть возможность читать онлайн «Stephen J. Mildenhall - Pricing Insurance Risk» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Pricing Insurance Risk: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Pricing Insurance Risk»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

PRICING INSURANCE RISK
A comprehensive framework for measuring, valuing, and managing risk Pricing Insurance Risk: Theory and Practice
Pricing Insurance Risk: Theory and Practice

Pricing Insurance Risk — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Pricing Insurance Risk», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The Cases share several common characteristics.

Each includes two units, one lower risk and one higher.

Reinsurance is applied to the riskier unit.

Total unlimited losses are calibrated to ¤ 100. (The symbol ¤ denotes a generic currency.)

Losses are in ¤ millions, although the actual unit is irrelevant.

For each Case Study:

Figures 2.2, 2.4, and 2.6 show densities. The horizontal axis shows loss amount. In each figure the top row shows gross losses and the bottom row shows net. The left column uses a linear scale and the right a log scale.

Figures 2.3, 2.5, and 2.7 show bivariate plots of one unit against the other. The three plots show the gross and net logdensities, and the right plot shows a scatter plot of a sample. The two units are assumed independent. These plots show where the bivariate distribution is concentrated.

Figure 22 Tame Case Study gross top and net bottom densities on a nominal - фото 5

Figure 2.2 Tame Case Study, gross (top) and net (bottom) densities on a nominal (left) and log (right) scale.

Figure 23 Tame Case Study bivariate densities gross left net center - фото 6

Figure 2.3 Tame Case Study, bivariate densities: gross (left), net (center), and a sample from gross (right). Impact of reinsurance is clear in net plot.

Figure 24 CatNonCat Case Study gross top and net bottom densities on a - фото 7

Figure 2.4 Cat/Non-Cat Case Study, gross (top) and net (bottom) densities on a nominal (left) and log (right) scale.

Figure 25 CatNonCat Case Study bivariate densities gross left net - фото 8

Figure 2.5 Cat/Non-Cat Case Study, bivariate densities: gross (left), net (center), and a sample from gross (right). Impact of reinsurance is clear in net plot.

Figure 26 HuSCS Case Study gross top and net bottom densities on a - фото 9

Figure 2.6 Hu/SCS Case Study, gross (top) and net (bottom) densities on a nominal (left) and log (right) scale.

Figure 27 HuSCS Case Study bivariate densities gross left net center - фото 10

Figure 2.7 Hu/SCS Case Study, bivariate densities: gross (left), net (center), and a sample from gross (right). Impact of reinsurance is clear in net plot.

We strongly recommend that the reader reproduce the Examples and Cases. We suggest a general-purpose programming language such as R or Python, although SQL or even a spreadsheet suffices, with a bit of ingenuity. See Section 2.4.5 for a discussion of the implementation we used.

2.4.1 The Simple Discrete Example

Ins Co. writes two units taking on loss values X1=0, 8, or 10, and X2=0, 1, or 90. The units are independent and sum to the portfolio loss X=X1+X2. The outcome probabilities are 1/2,1/4, and 1/4, respectively, for each marginal. The nine possible outcomes, with associated probabilities, are presented in Table 2.2. The output is typical of that produced by a catastrophe, capital, or pricing simulation model—albeit much simpler.

Exercise 1

Recreate Table 2.2in a spreadsheet (or R or Python). Compute and plot the distribution and survival functions, Pr(X≤x) and Pr(X>x) for X .

Solution.Since the data is discrete, the answers are step functions. The survival function is

21 Table 22 Simple Discrete Example with nine possible outcomes X1 X2 - фото 11(2.1)

Table 2.2 Simple Discrete Example with nine possible outcomes

X1 X2 X P(X1) P(X2) P(X)
0 0 0 1/2 1/2 1/4
0 1 1 1/2 1/4 1/8
0 90 90 1/2 1/4 1/8
8 0 8 1/4 1/2 1/8
8 1 9 1/4 1/4 1/16
8 90 98 1/4 1/4 1/16
10 0 10 1/4 1/2 1/8
10 1 11 1/4 1/4 1/16
10 90 100 1/4 1/4 1/16

Loss statistics are shown in Table 2.3. The table includes the impact of aggregate reinsurance on the more volatile unit X 2limiting losses to 20 and show a gross and net view for some exhibits. Others are left as Practice questions.

Table 2.3 Discrete Example estimated mean, CV, skewness and kurtosis by line and in total, gross and net. Aggregate reinsurance applied to X2 with an attachment probability 0.25 (¤ 20) and detachment probability 0.0 (¤ 100)

Gross Net
Statistic X1 X2 Total X1 X2 Total
Mean 4.500 22.750 27.250 4.500 5.250 9.750
CV 1.012 1.707 1.435 1.012 1.624 0.991
Skewness 0.071 1.154 1.131 0.071 1.147 0.794
Kurtosis −1.905 −0.667 −0.649 −1.905 −0.673 −0.501

2.4.2 Tame Case Study

In the Tame Case Study, Ins Co. writes two predictable units with no catastrophe exposure. We include it to demonstrate an idealized risk-pool: it represents the best case—from Ins Co.’s perspective. It could proxy a portfolio of personal and commercial auto liability.

To simplify simulations and emphasize the underlying differences between the two units, the Case Study uses a straightforward stochastic model. The two units are independent and have gamma loss distributions with parameters shown in Table 2.4.

Table 2.4 Loss distribution assumptions for each Case Study. The Hu/SCS Case combines a Poisson frequency and lognormal severity

Case Unit Distribution Mean CV Frequency µ σ
Tame A Gamma 50 0.10
B Gamma 50 0.15
Cat/Non-Cat Non-Cat Gamma 80 0.15
Cat Lognormal 20 1.0 2.649 0.833
Hu/SCS Hu Aggregate 30 10.923 2 −0.417 2.5
SCS Aggregate 70 0.736 70 1.805 1.9

The Case includes a gross and net view. Net applies aggregate reinsurance to the more volatile unit B with an attachment probability 0.2 (¤ 56) and detachment probability 0.01 (¤ 69).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Pricing Insurance Risk»

Представляем Вашему вниманию похожие книги на «Pricing Insurance Risk» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Pricing Insurance Risk»

Обсуждение, отзывы о книге «Pricing Insurance Risk» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x