Nanovaccinology as Targeted Therapeutics

Здесь есть возможность читать онлайн «Nanovaccinology as Targeted Therapeutics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Nanovaccinology as Targeted Therapeutics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Nanovaccinology as Targeted Therapeutics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

NANOVACCINOLOGY AS TARGETED THERAPEUTICS
Nanovaccinology as Targeted Therapeutics

Nanovaccinology as Targeted Therapeutics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Nanovaccinology as Targeted Therapeutics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

43. Getts, D.R., Shea, L.D., Miller, S.D., King, N.J., Harnessing nanoparticles for immune modulation. Trends Immunol ., 36, 419–427, 2015.

44. Santos, D.M. et al ., PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. Nanomed.: Nanotechnol. Biol. Med ., 9, 985–995, 2013.

45. Sawaengsak, C., Mori, Y., Yamanishi, K., Mitrevej, A., Sinchaipanid, N., Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech , 15, 317–325, 2014.

46. Dhakal, S. et al ., Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in Pigs. Front. Immunol ., 9, 934, 2018.

47. Lynn, G.M. et al ., In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol ., 33, 1201–1210, 2015.

48. Carroll, E.C. et al ., The vaccine Adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity , 44, 597–608, 2016.

49. Tahamtan, A. et al ., Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J. Biomed. Sci ., 21, 69, 2014.

50. Sawaengsak, C. et al ., Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int. J. Pharm ., 473, 113–125, 2014.

51. Ye, T. et al ., M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine , 32, 4457–4465, 2014.

52. Zhao, K. et al ., Enhancing mucosal immune response of newcastle disease virus DNA vaccine using N-2-Hydroxypropyl trimethylammonium chloride chitosan and N, O-carboxymethyl chitosan nanoparticles as delivery carrier. Mol. Pharmaceutics , 15, 226–237, 2018.

53. Zhao, K. et al ., Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Delivery , 24, 1574–1586, 2017.

54. Valero, Y. et al ., An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev. Comp. Immunol ., 65, 64–72, 2016.

55. Vela-Ramirez, J.E. et al ., Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. AAPS J ., 17, 256–267, 2015.

56. Ulery, B.D. et al ., Rational design of pathogen-mimicking amphiphilic materials as nanoadjuvants. Sci. Rep ., 1, 198, 2011.

57. Ross, K.A. et al ., Lung deposition and cellular uptake behavior of pathogen-mimicking nanovaccines in the first 48 hours. Adv. Healthcare Mater ., 3, 1071–1077, 2014.

58. Liu, Y. et al ., Functional nanomaterials can optimize the efficacy of vaccines. Small (Weinheim an der Bergstrasse, Germany) , 10, 4505–4520, 2014.

59. Stone, J.W. et al ., Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology , 24, 295102, 2013.

60. Gregory, A.E., Titball, R., Williamson, D., Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol ., 3, 13, 2013.

61. Bianco, A., Kostarelos, K., Prato, M., Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol ., 9, 674–679, 2005.

62. Wang, T. et al ., Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci.: Official Journal of the European Federation for Pharmaceutical Sciences , 44, 653–659, 2011.

63. Villa, C.H. et al ., Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano , 5, 5300–5311, 2011.

64. Parra, J., Abad-Somovilla, A., Mercader, J.V., Taton, T.A., Abad-Fuentes, A., Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. J. Control. Release: Official Journal of the Controlled Release Society , 170, 242–251, 2013.

65. Pantarotto, D. et al ., Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol ., 10, 961–966, 2003.

66. Niut, Y. et al ., Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther. Deliv ., 3, 1217–1237, 2012.

67. Yu, M. et al ., Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale , 5, 178–183, 2013.

68. Xia, T. et al ., Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano , 3, 3273–3286, 2009.

69. He, X.X. et al ., Bioconjugated nanoparticles for DNA protection from cleavage. J. Am. Chem. Soc ., 125, 7168–7169, 2003.

70. Wang, J. et al ., The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials , 35, 466–478, 2014.

71. Al-Deen, F.M. et al ., Magnetic nanovectors for the development of DNA blood-stage malaria vaccines. Nanomaterials (Basel, Switzerland) , 7, 1–17, 2017.

72. Joyappa, D.H., Kumar, C.A., Banumathi, N., Reddy, G.R., Suryanarayana, V.V., Calcium phosphate nanoparticle prepared with foot and mouth disease virus P1-3CD gene construct protects mice and guinea pigs against the challenge virus. Vet. Microbiol ., 139, 58–66, 2009.

73. Kraft, J.C., Freeling, J.P., Wang, Z., Ho, R.J., Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci ., 103, 29–52, 2014.

74. Schwendener, R.A., Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines , 2, 159–182, 2014.

75. Wang, N. et al ., Mannose derivative and lipid a dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur. J. Pharm. Biopharm.: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V , 88, 194–206, 2014.

76. Orr, M.T. et al ., Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. J. Control. Release: Official Journal of the Controlled Release Society , 172, 190–200, 2013.

77. Felnerova, D., Viret, J.F., Glück, R., Moser, C., Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotechnol ., 15, 518–529, 2004.

78. Monto, A.S. et al ., Influenza control in the 21st century: Optimizing protection of older adults. Vaccine , 27, 5043–5053, 2009.

79. Noad, R. and Roy, P., Virus-like particles as immunogens. Trends Microbiol ., 11, 438–444, 2003.

80. Grimm, S.K. and Ackerman, M.E., Vaccine design: Emerging concepts and renewed optimism. Curr. Opin. Biotechnol ., 24, 1078–1088, 2013.

81. Bissett, S.L. et al ., Pre-clinical immunogenicity of human papillomavirus alpha-7 and alpha-9 major capsid proteins. Vaccine , 32, 6548–6555, 2014.

82. Zhang, N., Wardwell, P.R., Bader, R.A., Polysaccharide-based micelles for drug delivery. Pharmaceutics , 5, 329–352, 2013.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Nanovaccinology as Targeted Therapeutics»

Представляем Вашему вниманию похожие книги на «Nanovaccinology as Targeted Therapeutics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Nanovaccinology as Targeted Therapeutics»

Обсуждение, отзывы о книге «Nanovaccinology as Targeted Therapeutics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x