Nanovaccinology as Targeted Therapeutics
Здесь есть возможность читать онлайн «Nanovaccinology as Targeted Therapeutics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Nanovaccinology as Targeted Therapeutics
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
Nanovaccinology as Targeted Therapeutics: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Nanovaccinology as Targeted Therapeutics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Nanovaccinology as Targeted Therapeutics
Nanovaccinology as Targeted Therapeutics — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Nanovaccinology as Targeted Therapeutics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Acknowledgments
A.B. Imran gratefully acknowledges the support of the Capacity Utilization Programme under Special Allocation for Science and Technology (BS-182 and PHY’S-467) from the Ministry of Science and Technology, Peoples Republic of Bangladesh. A.B. Imran is also thankful to the Committee for Advanced Studies and Research (CASR) in BUET. T. Foyez cordially acknowledge the support from North South University.
References
1. Arias, C.A. and Murray, B.E., Antibiotic-resistant bugs in the 21st century–A clinical super-challenge. New Engl. J. Med ., 360, 439–443, 2009.
2. Rosenblum, M.D., Remedios, K.A., Abbas, A.K., Mechanisms of human autoimmunity. J. Clin. Invest ., 125, 2228–2233, 2015.
3. Whitney, C.G., Zhou, F., Singleton, J., Schuchat, A., Benefits from immunization during the vaccines for children program era - United States, 1994-2013. MMWR. Morb. Mortal. Wkly. Rep ., 63, 352–355, 2014.
4. Wraith, D.C., Therapeutic peptide vaccines for treatment of autoimmune diseases. Immunol. Lett ., 122, 134–136, 2009.
5. Anderson, R.P. and Jabri, B., Vaccine against autoimmune disease: Antigen-specific immunotherapy. Curr. Opin. Immunol ., 25, 410–417, 2013.
6. Plotkin, S., History of vaccination. Proc. Natl. Acad. Sci. U.S.A ., 111, 12283–12287, 2014.
7. Shin, M.D. et al ., COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol ., 15, 646–655, 2020.
8. Munks, M.W. et al ., Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood , 116, 5191–5199, 2010.
9. Zhang, X.Q. et al ., Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. J. Immunother. (Hagerstown, Md.: 1997) , 30, 469–478, 2007.
10. Hokmabad, V.R. et al ., A comparison of the effects of silica and hydroxyapatite nanoparticles on poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering. Tissue Eng. Regener. Med ., 15, 735–750, 2018.
11. Krishnamachari, Y., Geary, S.M., Lemke, C.D., Salem, A.K.J.P.r., Nanoparticle delivery systems in cancer vaccines. Pharm. Res ., 28, 215–236, 2011.
12. Joshi, V.B., Geary, S.M., Salem, A.K., Biodegradable particles as vaccine delivery systems: Size matters. AAPS J ., 15, 85–94, 2013.
13. Bishop, C.J., Kozielski, K.L., Green, J.J., Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J. Control. Release: Off. J. Controlled Release Soc ., 219, 488–499, 2015.
14. Corbo, C., Molinaro, R., Tabatabaei, M., Farokhzad, O.C., Mahmoudi, M., Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci ., 5, 378–387, 2017.
15. Corbo, C. et al ., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (London, England) , 11, 81–100, 2016.
16. Fang, R.H., Kroll, A.V., Gao, W., Zhang, L., Cell membrane coating nanotechnology. Adv. Mater. (Deerfield Beach, Fla.) , 30, e1706759, 2018.
17. Gao, W. et al ., Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. (Deerfield Beach, Fla.) , 25, 3549–3553, 2013.
18. Vijayan, V., Uthaman, S., Park, I.K., Cell Membrane-camouflaged nanoparticles: A promising biomimetic strategy for cancer theragnostics. Polymers , 10, 1–25, 2018.
19. Zhao, L. et al ., Nanoparticle vaccines. Vaccine , 32, 327–337, 2014.
20. Laval, J.M., Mazeran, P.E., Thomas, D., Nanobiotechnology and its role in the development of new analytical devices. Analyst , 125, 29–33, 2000.
21. Schneider, C.S. et al ., Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv ., 3, e1601556, 2017.
22. Irvine, D.J., Hanson, M.C., Rakhra, K., Tokatlian, T., Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev ., 115, 11109–11146, 2015.
23. Szeto, G.L. and Lavik, E.B., Materials design at the interface of nanoparticles and innate immunity. J. Mater. Chem. B , 4, 1610–1618, 2016.
24. Chattopadhyay, S., Chen, J.Y., Chen, H.W., Hu, C.J., Nanoparticle Vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics , 1, 244–260, 2017.
25. Pachioni-Vasconcelos, J. de A., et al ., Nanostructures for protein drug delivery. Biomater. Sci ., 4, 205–218, 2016.
26. Fredriksen, B.N. and Grip, J., PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine , 30, 656–667, 2012.
27. Zhu, M., Wang, R., Nie, G., Applications of nanomaterials as vaccine adjuvants. Hum. Vaccin. Immunother ., 10, 2761–2774, 2014.
28. Ghiringhelli, F. et al ., Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med ., 15, 1170–1178, 2009.
29. He, Y., Hara, H., Núñez, G., Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci ., 41, 1012–1021, 2016.
30. Pati, R., Shevtsov, M., Sonawane, A., Nanoparticle vaccines Against infectious diseases. Front. Immunol ., 9, 2224, 2018.
31. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery , 4, 145–160, 2005.
32. Mamo, T. and Poland, G.A., Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine , 30, 6609–6611, 2012.
33. Kushnir, N., Streatfield, S.J., Yusibov, V., Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine , 31, 58–83, 2012.
34. Plummer, E.M. and Manchester, M., Viral nanoparticles and virus-like particles: Platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol ., 3, 174–196, 2011.
35. Roldão, A., Mellado, M.C., Castilho, L.R., Carrondo, M.J., Alves, P.M., Virus-like particles in vaccine development. Expert Rev. Vaccines , 9, 1149–1176, 2010.
36. Chen, Y.-C., Cheng, H.-F., Yang, Y.-C., Yeh, M.-K., Nanotechnologies applied in biomedical vaccines. IntechOpen, J. Pharm. Pharmacol ., 5, 85–107, 2017.
37. Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C., Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev ., 41, 2971–3010, 2012.
38. Shae, D., Postma, A., Wilson, J.T., Vaccine delivery: where polymer chemistry meets immunology. Ther. Deliv ., 7, 193–196, 2016.
39. Acharya, S. and Sahoo, S.K., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev ., 63, 170–183, 2011.
40. Mahapatro, A. and Singh, D.K., Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnol ., 9, 55, 2011.
41. Danhier, F. et al ., PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release: Official Journal of the Controlled Release Society , 161, 505–522, 2012.
42. Silva, A.L., Soema, P.C., Slütter, B., Ossendorp, F., Jiskoot, W., PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccin. Immunother ., 12, 1056–1069, 2016.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Nanovaccinology as Targeted Therapeutics»
Представляем Вашему вниманию похожие книги на «Nanovaccinology as Targeted Therapeutics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Nanovaccinology as Targeted Therapeutics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.