33. C.-W. Tsai, C.-F. Lai, M.-C. Chiang, L. T. Yang, Data mining for internet of things: a survey, IEEE Communications Surveys & Tutorials 16 (1) (2014) 77–97
34. Fadi, AL-Turjman, and Deebak Bakkiam David. “Seamless Authentication: For IoT-Big Data Technologies in Smart Industrial Application Systems.” IEEE Transactions on Industrial Informatics (2020).
35. Pääkkönen, Pekka, and Daniel Pakkala. “Extending reference architecture of big data systems towards machine learning in edge computing environments.” Journal of Big Data 7 (2020): 1-29.
36. Neelakandan, S & Paulraj, D 2020, ‘A gradient boosted decision tree-based sentiment classification of twitter data’, International Journal of Wavelets, Multiresolution and Information Processing, vol. 18, no. 4, pp. 205027 1-21. DOI: https://doi.org/10.1142/S0219691320500277
37. Neelakandan, S & Paulraj, D 2020, ‘An Automated Exploring And Learning Model For Data Prediction Using Balanced CA-Svm’, Journal of Ambient Intelligence and Humanized Computing, Vol.12, no.5, April 2020 , DOI: https://doi.org/10.1007/s12652-020-01937-9
38. Neelakandan, S, Annamalai, R., Rayen, S. J., & Arunajsmine, J. (2020). Social Media Networks Owing To Disruptions For Effective Learning. Procedia Computer Science, Vol.172, pp.145–151. doi:10.1016/j.procs.2020.05.022
39. S. Neelakandan and J. Gokul Anand, “Trust based optimal routing in MANET’s,” 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 2011, pp. 1150-1156, doi: 10.1109/ICETECT.2011.5760293.
40. Neelakandan, S “Large scale optimization to minimize network traffic using MapReduce in big data applications”. International Conference on Computation of Power, Energy Information and Communication (ICCPEIC), pp. 193-199, April 2016. DOI : 10.1109/ICCPEIC.2016.7557196
41. Neelakandan, S & Paulraj, D 2020, ‘An Automated learning model of Conventional Neural Network based Sentiment Analysis on Twitter Data’, Journal of Computational and Theoretical Nano science. vol. 17, no. 5, pp. 2230-2236, May 2020. DOI : https://doi.org/10.1166/jctn.2020.8876.
42. Madhan E.S ,Neelakandan, S, R.Annamalai 2020, ‘A Novel Approach for Vehicle Type Classification and Speed Prediction Using Deep Learning’, Journal of Computational and Theoretical Nano science. vol. 17, no. 5, pp. 2237-2242, May 2020.DOI:10.1166/jctn.2020.8877
43. Akshat Agrawal, Rajesh Arora, Ranjana Arora, Prateek Agrawal, “Applications of Artificial Intelligence and Internet of Things for Detection and Future to Fight against COVID-19”, A book on Emerging Technologies for battling COVID-19- Applications and Innovations, Feb 2021, Springer.
44. Vishu Madaan, Aditya Roy, Charu Gupta, Prateek Agrawal, Anand Sharma, Christian Bologa, Radu Prodan, “XCOVNet: Chest X-ray Image Classification for COVID-19 Early Diagnosis using Convolution Neural Networks”, New Generation Computing, Springer, 2021.
45. Prateek Agrawal, Deepak Chaudhary, Vishu Madaan, Anatoliy Zabrovskiy, Radu Prodan, Dragi Kimovski, Christian Timmerer, “Automated Bank Cheque Verification Using Image Processing and Deep Learning Methods”, Multimedia tools and applications (MTAP), 80(1), pp. 1-32.
1 *Corresponding author: d.karthi666@gmail.com
2 †Corresponding author: kalairaghu.scs@velsuniv.ac.in
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.