Mohamed-Aymen Chalouf - Intelligent Security Management and Control in the IoT

Здесь есть возможность читать онлайн «Mohamed-Aymen Chalouf - Intelligent Security Management and Control in the IoT» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Intelligent Security Management and Control in the IoT: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Intelligent Security Management and Control in the IoT»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The Internet of Things (IoT) has contributed greatly to the growth of data traffic on the Internet. Access technologies and object constraints associated with the IoT can cause performance and security problems. This relates to important challenges such as the control of radio communications and network access, the management of service quality and energy consumption, and the implementation of security mechanisms dedicated to the IoT.<br /><br />In response to these issues, this book presents new solutions for the management and control of performance and security in the IoT. The originality of these proposals lies mainly in the use of intelligent techniques. This notion of intelligence allows, among other things, the support of object heterogeneity and limited capacities as well as the vast dynamics characterizing the IoT.

Intelligent Security Management and Control in the IoT — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Intelligent Security Management and Control in the IoT», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In this first scenario, we consider urban VANETs where the scene of the accident is captured by the first vehicle on the scene. Then, this vehicle will transmit the video to the rescue teams so that they can manage the emergency more effectively. In such a situation, the total transmission delay for a multimedia message is limited to a few seconds to ensure notification in real time (Javed et al . 2014). For this type of traffic (Table 1.1), the delay and the flow are considered dominant attributes.

As Figure 1.3 shows, the network architecture in a city is based on the vehicles with OBUs and infrastructures such as RSUs, WiFi access points and LTE eNB base stations for the 4G cell phone network. We suppose that each vehicle is equipped with three radio interfaces: 4G interface, WiFi interface and 802.11p interface.

Figure 13 Transmission of video from the scene of an accident in VANET - фото 17

Figure 1.3. Transmission of video from the scene of an accident in VANET networks

The simulation of this scenario, under the network simulator ns3, involves a WiFi access point and a LTE base station offering a theoretical flow of 11 Mbps and 24 Mbps, respectively. At the start, the number of active users is 4 for the WiFi cell and 10 for the LTE cell. The simulation parameters are listed in Table 1.3.

The effective data flow observed by the user of an LTE or WiFi network may be much lower than the theoretical flows stated and defined by the norms. The main factors influencing the effective flow are the number of active users sharing the bandwidth within a cell, the bandwidth frequency allocated to the network operator and the distance between the terminal and the relay antenna. These factors will also influence other QoS parameters such as latency and the average loss rate. For these reasons, the suggested multicriteria decision-making module will calculate the scores of the different networks detected depending on the estimated available bandwidth, the average delay measured and the packet rate loss measured.

Table 1.3. Simulation parameters for scenario 1

Parameters Values
Duration of simulation 50 s
Traffic video Send interval 1 ms Packet size 1,000 octets
Witness vehicle Speed: stationary Distance – AP WiFi: 20 m Distance – LTE BS: 60 m
Mobility model Random Waypoint Model
Number of active users At t = 10 s, WiFi (4), LTE (10) At t = 20 s, WiFi (10), LTE (20) At t = 30 s, WiFi (20), LTE (10) At t = 40 s, WiFi (10), LTE (4) At t = 50 s, WiFi (10), LTE (10)
Theoretical flow for WiFi 11 Mbps
Theoretical flow for LTE 24 Mbps

The number of active users may vary during the simulation (Table 1.3) as vehicles or pedestrians depart or arrive. The variation in this parameter influences the QoS parameters characterizing the candidate networks and, consequently, their scores. Figure 1.4 shows the effect of the dynamic network environment on optimal network selection for the service video. Depending on the configuration adopted for this scenario, the results of the simulation show that LTE is selected as an optimal network. In fact, when the LTE score increases because of the dynamic network environment, the optimal network passes from the WiFi to the LTE for the network selection decision. To ensure the stability of the decision and avoid the ping-pong effect, we wait for the following period to make the decision to be sure that the right decision is made.

Considering this example, if (1) the execution period of the suggested decision-making module is not adjusted automatically and (2) the transfer is made after the new trend is confirmed, the transfer will take place at 40 s. This is much later than the changeover time estimated at 23 s. This is why, as we said previously, it is very important to adjust the execution period of the suggested decision-making module automatically.

Figure 14 Score variation in VANET networks for transmission of a video - фото 18

Figure 1.4. Score variation in VANET networks for transmission of a video message

1.4.3.2. Scenario 2: selecting the radio channel – the case of CR-VANET

Thanks to its cognitive capacity, the compatible intelligent radio vehicle can search for spectrum holes (white spaces) and take opportune decisions to transmit without interfering with the primary users. It can also make adaptations such as modifying the transmission power or the radio channels to meet QoS requirements for vehicle applications.

In this second scenario, we will consider a CR-VANET highway environment in the countryside and we will focus on infotainment applications, especially restaurant reservation. On the topology of CR-VANET highways, the speed of vehicles on the highways is significantly higher than in urban scenarios.

To evaluate performances, we consider the network architecture of a CR-VANET (Figure 1.5) where each vehicle is equipped with wireless communication interfaces (such as a 4G interface and a WiFi interface) and has intelligent radio capacities.

The simulations were made using ns3 paired with SUMO to generate real traffic mobility. The simulation parameters are listed in Table 1.4. For the same reasons cited in the previous scenario, the energy aspect will not be considered here.

Figure 15 Entertainment service on a highway in CRVANET networks Table - фото 19

Figure 1.5. Entertainment service on a highway in CR-VANET networks

Table 1.4. Simulation parameters for scenario 2

Parameters Values
Simulation duration 50 s
Data traffic Flow: 64 kbps
Vehicle mobility model Car Following Model
Intelligent radio channels available TV white space bandWiFi white space bandLTE white space band

For the vehicle behavior model, we have adopted the Car Following Model , which is based on the following parameters: vehicle acceleration, vehicle deceleration, vehicle length, maximum speed of the vehicle and driver imperfection. The values of these parameters are presented in Table 1.5.

Based on the spectral resources detected, the suggested multicriteria decision-making module will calculate the scores of different channels and select the one with the highest score.

Table 1.5. Simulation parameters for the SUMO vehicle

Parameters Values
Vehicle acceleration 2.5 m/s 2
Vehicle deceleration 4.6 m/s 2
Average vehicle length 5 m
Maximum vehicle speed 140 km/h
Driver imperfection 0.5
Figure 16 Variation of the scores of intelligent radio channels for the - фото 20

Figure 1.6. Variation of the scores of intelligent radio channels for the entertainment service

Figure 1.6 shows the impact of the dynamic network environment (such as the available bandwidth, the channel’s availability probability and the speed of the vehicle) on selecting the channel best adapted to the infotainment service (restaurant reservation). In Figure 1.6, we can observe that with the high mobility of candidate vehicles on the highways, the channel corresponding to the WiFi bandwidth is not a good candidate. We also observe a degradation of the score of the radio channel corresponding to the bandwidth of the LTE and an increase in the score of the channel corresponding to the TV bandwidth. The evolution of the scores over time justifies the decision to carry out a spectrum handoff, from the suggested module to the TVWS channel. Before running the spectrum handoff, we wait for the choice of the best channel to be confirmed for the following period. This will enable us to avoid unhelpful transfers. And to avoid running the spectrum handoff very late, this wait time will be adjusted automatically. In this scenario, we observe that the choice of TVWS is fully adapted to this context, not only in terms of QoS but also from the perspective of mobility. Indeed, this spectral band is characterized by a long range that is best suited to scenarios with high mobility.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Intelligent Security Management and Control in the IoT»

Представляем Вашему вниманию похожие книги на «Intelligent Security Management and Control in the IoT» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Intelligent Security Management and Control in the IoT»

Обсуждение, отзывы о книге «Intelligent Security Management and Control in the IoT» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x