Идея была блестящей и простой. Камера Блэкетта работала, автоматически снова и снова делая снимки, и ждала своего шанса – когда случится что-то выдающееся. На большинстве снимков ничего интересного не было, следы фиксировались примерно на одном из двадцати. Счетчик Гейгера усиливал сильные стороны и ослаблял слабые стороны камеры Вильсона. Он реагировал, если сквозь него проходила заряженная частица, но практически ничего не показывал для того, чтобы определить, откуда она появилась. Блэкетт и Оккиалини решили поместить один счетчик Гейгера над камерой Вильсона, а второй – под ней. Если оба счетчика отреагируют одновременно, это будет подтверждением прохода космического луча сквозь камеру, – решили они. В результате удалось зафиксировать следы космического излучения на пленке. Главное – это то, что следы остаются после прохождения луча, ведь к тому времени, как делался снимок, луч уже давно прошел, но важные капли все еще оставались в газе.
Классическая фотография (ок. 1930 г.) получена в опыте Блэкетта, где радиоактивный источник помещен в камеру Вильсона, наполненную смесью газов. Эту реакцию можно описать как захват ядра гелия ядром азота, который превращается при этом в короткоживущий изотоп фтора, мгновенно распадающийся (с высвобождением энергии) на кислород и протон. На фото полностью виден трек протона – без преувеличения можно сказать, что вероятность наблюдения такого трека не превышает одной миллионной
Если раньше у Блэкетта получалась одна успешная фотография из двадцати, то теперь результат показывали четыре из пяти! Первые фотографии этим методом были сделаны в июне 1932 года, а к концу осени у исследователей набралось уже около тысячи снимков. Они обратили внимание на то, что ряд следов, которые на первый взгляд казались электронами, на самом деле отклонялись не в ту сторону в магнитном поле. Блэкетт обсудил этот вопрос с Дираком.
Дирак не только не воскликнул «Эврика!», но даже и «Позитрон!», хотя это было доказательством его теории. Но этого не произошло. Почему-то Блэкетт с Дираком не смогли сделать должный вывод. Возможно, это объясняется осторожностью Дирака (или Блэкетт не смог оценить глубину теории Дирака, или просто не воспринимал ее достаточно серьезно). Но как бы это ни объяснялось, Блэкетт с Дираком расстались, и ни один из них не осознал до конца истины, которая была у них перед глазами. Как незадолго до них Скобельцын упустил Нобелевскую премию, так и Блэкетт с Оккиалини не заметили, какое открытие совершили. И только услышав об открытии Карла Андерсона, они наконец поняли, что обнаружили.
Карл Дэвид Андерсон (1905–1991) – американский физик-экспериментатор, открывший позитрон и удостоенный за это Нобелевской премии по физике (1936). Разделил премию с Виктором Гессом, открывшим космические лучи и доказавшим их внеземное происхождение
Но, к счастью, они могли предложить больше, чем Скобельцын и Андерсон в своих неточных и неустойчивых экспериментах. На многих фотографиях было видно до двадцати следов, оставленных частицами, которые выходили из какой-то точки на медной пластине, расположенной сразу же над камерой, словно вода из душа. Сильное магнитное поле во всей камере отклоняло треки, показывая, что примерно половина частиц заряжены отрицательно, а остальные – положительно. Блэкетт и Оккиалини поняли, что позитроны не появляются на Земле естественным образом. Появление равных количеств позитронов и электронов должно происходить потому, что они производятся некоей невидимой космической радиацией с большим количеством энергии. То есть позитроны формируются в результате столкновений космических лучей и атомов в камере Вильсона.
Камера, с которой работали ученые, имела стеклянные стенки в медной обшивке, и ливни были результатом ударов космических лучей о металл. Таким образом, одного электрона в космическом луче достаточно для получения каскада электронов и позитронов. Сильные электрические поля внутри атомов меди заставляли проходящие электроны излучать гамма-лучи и обеспечивали достаточное количество энергии этим гамма-лучам. Они в свою очередь обеспечивали пары электронов и позитронов. Уравнение Альберта Эйнштейна E = mc 2подразумевает, что энергию (Е) можно превратить в массу ( m ) – радиацию в материю – а Блэкетт с Оккиалини впервые продемонстрировали создание материи и антиматерии из радиации. Они доказали, что новая частица Андерсона не является каким-то странным внеземным пришельцем, вторгающимся на чужую территорию.
Читать дальше
Конец ознакомительного отрывка
Купить книгу