В 1923 году Роберт Милликен получил Нобелевскую премию за измерение заряда электрона с высокой точностью. Милликен проводил эксперименты с заряженными капельками масла. Он измерил в них заряд электрона.
Элементарный электрический заряд является одной из фундаментальных физических констант, и знание его точного значения очень важно. В своих экспериментах Милликен измерял силу, действующую на мельчайшие заряженные капельки масла, подвешенные между электродами при помощи электрического поля. При известном значении электрического поля можно определить заряд капли. Проведя повторные эксперименты с большим количеством капелек, Милликен показал, что результаты могут быть объяснены, если предположить, что заряд капли пропорционален целому числу элементарных зарядов.
Выражение «космические лучи» (или «космическое излучение») тоже придумал Милликен, у которого была своя теория происхождения внеземной радиации. Он считал, что космические лучи – это гамма-лучи, «родовые муки создания», как он называл их сам, хотя не совсем понятно, что он имел в виду. Чтобы извлечь из лучей то, что в них содержится, вначале нужно заставить их изогнуться, или отклониться, показать заряд и энергию, а для этого требуется более сильный магнит. Если магнитное поле достаточно сильное, то можно отклонить и перенаправить даже самые быстрые частицы. В 1930 году Милликен предложил своему студенту Карлу Андерсону построить достаточно мощный магнит для отклонения космических лучей.
Андерсон воплотил это с помощью инженеров в ближайшей аэронавигационной лаборатории. Магнитные поля получались в десять раз мощнее, чем у Скобельцына, с их помощью Андерсону удалось изменить направления полета частиц. К своему удивлению он обнаружил, что в космических лучах содержатся и положительно, и отрицательно заряженные частицы в примерно равных количествах.
Как говорилось выше, Милликен считал, что космические лучи состоят из гамма-лучей, которые следов не оставляют. Он предположил, что заряженные частицы были выбиты из атомов гамма-лучами. В его интерпретации отрицательными были электроны, а положительными – протоны. Однако фотографии, сделанные Андерсоном, с этим не совсем сочетались. Легкие частицы типа электронов оставляют тонкие слабые следы, очень сильно отличающиеся от плотных следов массивных протонов. Все следы на фотографиях Андерсона выглядели как следы электронов, и поэтому он высказал предположение, что те, которые отклонились «не в ту сторону», – это не положительно заряженные частицы, идущие вниз, а электроны, идущие вверх. Милликену это не понравилось, на его суждения сильно влияло понимание природы космических лучей, и он настаивал, что даже если следы тонкие, а не густые, их тем не менее вызывают протоны, которые идут вниз.
Андерсон решил спор, установив свинцовую пластину в центре камеры. Если частица пройдет сквозь пластину, то потеряет энергию, и ее кривая изменится после того как она выйдет из пластины, в сравнении с тем, какой была до входа. Таким образом, споры о том, идут ли они вверх или вниз, прекратятся, также раз и навсегда определится знак заряда: положительные – вниз, а отрицательные – вверх.
Это и вправду дало ответ на вопрос и показало, что ошибались и Андерсон, и Милликен! Следы были оставлены не положительно заряженными протонами и не электронами, которые шли вверх, а являлись следами «положительных электронов», которые шли вниз. По крайней мере Андерсон был удовлетворен, хотя ему все еще было трудно убедить своего учителя в находке.
Интересно, что первым Андерсон увидел позитрон, который в действительности двигался вверх (это оказался случайный позитрон, получившийся в результате удара космического луча по атому в воздухе ниже свинцовой пластины, затем он отскочил вверх и прошел сквозь нее). Затем ученый обнаружил первый красивый пример положительной частицы, которая определенно была гораздо легче протона и двигалась вниз сквозь свинцовую пластину. Вскоре он увидел несколько примеров таких «положительных электронов» и обрел достаточную уверенность в находке, чтобы рассказать о ней научной общественности. Первая фотография следов была опубликована в декабре 1931 года в журнале Science News Leter, тогда же впервые появилось название «позитрон». И сохраняется до сих пор.
Патрик Блэкетт и Джузеппе Оккиалини
В 1931 году считалось, что материя состоит из атомов, и «атомное меню» весьма простое – электроны и протоны. Позитронам там места не было. Так откуда же они появились и что собой представляют?
Читать дальше
Конец ознакомительного отрывка
Купить книгу