Классические законы движения были открыты Исааком Ньютоном свыше 300 лет назад. Первый закон гласит, что всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние. Тела не любят выходить из состояния покоя или менять прямолинейное движение, а опыт показывает, что легче передвинуть лист, чем кусок свинца. Ньютон утверждал, что если применить одну и ту же силу к двум телам, то их относительное ускорение будет мерой внутренней инерции, или массы.
А что происходит, если непреодолимая сила встречается с неподвижным предметом? У неподвижного предмета должна быть бесконечная масса. Но такая концепция невозможна, по крайней мере, в механике Ньютона, поскольку вся масса во Вселенной не является бесконечной, хотя и огромной. Однако после того, как Эйнштейн переписал наш взгляд на мир в своей теории относительности, идея о бесконечной массе и полном сопротивлении ускорению там, где происходит искажение пространства и времени, становится реальностью.
Если мы имеем неподвижное тело и в течение секунды применяем к нему силу, то его скорость увеличится на некое значение, например 10 метров в секунду. А теперь снова приложим ту же силу. По Ньютону и по нашему жизненному опыту, скорость снова увеличится на 10 метров в секунду. Если повторять этот эксперимент, то тело будет ускоряться и ускоряться без ограничений. Хотя по Эйнштейну, если очень точно измерять изменения в скорости, обнаружится, что, хотя скорость выросла на 10, следующий толчок ускорит его чуть меньше, чем на 10 метров в секунду, и по мере движения быстрее и быстрее ускорять его станет труднее и труднее. Если тело будет двигаться на скорости, близкой к скорости света, то применение силы едва ли изменит его скорость.
Правила Ньютона являются идеальным приближением к точным законам движения, пока мы имеем дело только с предметами, которые двигаются медленно относительно скорости света. Скорость света составляет 300 000 километров в секунду, и законы Ньютона очень точны в том, что касается нашей обычной жизни. Но если нас интересует поведение электронов в ускорителе частиц, где совсем другие скорости, следует пользоваться описанием Эйнштейна.
В теории относительности Эйнштейна масса тела становится больше и больше по мере того, как оно движется быстрее и быстрее. При приближении к скорости света масса растет чрезвычайно быстро, заставляя тело еще больше сопротивляться ускорению. В конце концов, если попытаться достичь скорости света, то масса станет бесконечной. Поэтому невозможно ускорить массивный предмет до скорости света. И передвигаться со скоростью света может только то, что не имеет массы, например сам свет!
Хотя идея о том, что инерция меняется вместе со скоростью, может показаться странной с точки зрения нашего «здравого смысла», тем не менее это так, как показывают годы экспериментов с частицами высоких энергий. Если частицы материи отправляются в путь в лабораториях уровня ЦЕРН, чтобы встретиться с лучами антиматерии, идущими в другом направлении, то расчет времени является чрезвычайно важным для того, чтобы они прибыли куда следует, когда следует, и при этом нужно учитывать относительность.
Взаимоотношение между энергией и движением, о котором известно с времен Ньютона, и которое приняли пионеры новой квантовой механики, изначально помогло в описании поведения атомов и электронов, но в действительности оно является более сложным.
Удивительным и имеющим гораздо большее значение в теории относительности Эйнштейна является то, что даже неподвижный предмет содержит энергию, которая «поймана в ловушку» в составляющих его атомах. Количество энергии – это «Е» в знаменитом уравнении Е = mc 2, где m – это масса, а с – скорость света. Она латентна внутри материи, даже если та неподвижна.
Если мы говорим о движущемся теле, то в сумму должна быть добавлена кинетическая энергия. Естественным кажется простое добавление кинетической энергии к энергии, содержащейся в массе (mc 2). Это было бы так, если бы не тот факт, что при движении масса предмета m увеличивается, и таким образом величина mc 2также меняется. Хотя разобраться со всем этим сложно, ответ для общей энергии Е движущегося тела оказался довольно простым. Рассчитывают ее, вначале добавив возведенную в квадрат энергию движения к возведенной в квадрат энергии в массе движущегося тела mc 2. Квадратный корень получившегося числа будет ответом. Так что, например, если количество энергии в покое равнялось четырем джоулям, а движение дало еще три джоуля, то в целом будет пять джоулей (три на три, прибавленные к четыре на четыре, дают в целом двадцать пять, что является тем же самым, что и пять на пять).
Читать дальше
Конец ознакомительного отрывка
Купить книгу