Суть теории вероятности можно уяснить из следующих простых фактов [90] Превосходное краткое и популярное изложение некоторых важнейших принципов теории вероятности можно найти в Kline 1967.
. Никто не может точно предсказать, какой стороной вверх упадет подброшенная монетка. Даже если десять раз подряд выпадала решка, это ни на йоту не поможет нам точно предсказать, что выпадет в следующий раз. Однако мы можем совершенно точно предсказать, что если бросить монетку десять миллионов раз, то с очень небольшими отклонениями в половине случаев выпадет орел, а в половине – решка. Более того, в конце XIX статистик Карл Пирсон, набравшись терпения, подбросил монетку 24 000 раз. Решка выпала в 12 012 случаев. В некотором смысле теория вероятности к этому и сводится. Теория вероятности снабжает нас точной информацией о том, как будет выглядеть совокупность результатов большого количества экспериментов, но никогда не предсказывает результат какого-то одного конкретного эксперимента [91] О применимости теории вероятности во множестве реальных жизненных ситуаций прекрасно рассказано в Rosenthal 2006.
. Если эксперимент может дать n возможных результатов, причем шансы получить каждый из них равны, то вероятность каждого результата равна 1/ n . Если бросить кость, не жульничая, то вероятность получить число 4 равна 1/6, поскольку у игральной кости шесть сторон и шансы на то, что выпадет та или иная из них, равны. Представьте себе, что вы бросили кость семь раз подряд и каждый раз получали 4 – какова вероятность получить 4 в результате следующего броска? Теория вероятности дает на это четкий и ясный ответ: вероятность по-прежнему равна 1/6, потому что кость ничего не помнит и все разговоры о «счастливой звезде» и о том, что следующий бросок возместит прежний перекос, не более чем мифы. А правда состоит в том, что если бросить кость миллион раз, результаты выровняются по средним значениям, и 4 будет выпадать почти точно в 1/6 части случаев.
Рассмотрим несколько более сложную ситуацию. Предположим, вы одновременно бросаете три монеты. Какова вероятность получить две решки и одного орла? Ответ мы получим, если переберем все возможные варианты. Обозначим орлов О , а решки Р и получим восемь возможных вариантов: РРР, РРО, РОР, РОО, ОРР, ОРО, ООР и ООО. Легко убедиться, что варианту «две решки, один орел» соответствует три комбинации. Следовательно, вероятность этого события 3/8. А в общем виде, если из n результатов с равными шансами m соответствуют событию, которое вас интересует, то вероятность такого составляет m/n . Обратите внимание, что это значит, что вероятность принимает значения от 0 до 1. Если интересующее вас событие не может произойти, то m = 0 (никакой результат ему не соответствует) и вероятность равна нулю. Если же событие произойдет совершенно точно, значит, ему соответствуют все n результатов ( m = n ) и вероятность попросту составляет n/n = 1. Результаты броска трех монет свидетельствуют и еще об одной существенной особенности теории вероятностей: если у вас есть несколько событий, полностью независимых друг от друга, то вероятность, что произойдут они все, – это произведение отдельных вероятностей. Например, вероятность получить три орла равна 1/8, что равно произведению трех вероятностей получить орла на каждой из трех монет: 1/2 × 1/2 × 1/2 = 1/8.
Ладно, подумаете вы, но где можно применять эти фундаментальные понятия теории вероятностей? Разве что в казино или во время других азартных игр? Представьте себе, эти незначительные на первый взгляд законы теории вероятностей лежат в основе современных генетических исследований – изучения наследования биологических характеристик.
Теорию вероятности свел с генетикой один моравский священник [92] Превосходная биография Менделя – Orel 1996.
. Грегор Мендель (1822–1884) родился в деревне близ границы между Моравией и Силезией (нынешняя деревня Хинчице в Чешской республике). Приняв постриг в августинском монастыре Св. Фомы в Брно, Мендель изучал зоологию, ботанику, физику и химию в Венском университете. Вернувшись в Брно, он начал деятельно экспериментировать с душистым горошком при всевозможной поддержке настоятеля монастыря.
Объектом исследования Мендель выбрал именно душистый горошек, поскольку его легко выращивать, а также потому, что у растения есть и мужские, и женские органы размножения. Следовательно, растения душистого горошка могут размножаться и самоопылением, и скрещиванием с другим растением. При скрещивании растений, которые дают только зеленые зерна, с растениями, которые дают только желтые зерна, Мендель получил на первый взгляд какие-то странные результаты (рис. 34). У растений первого поколения зерна были только желтые. Однако во втором поколении соотношение желтых и зеленых зерен всегда составляло 3:1! Это неожиданное открытие дало Менделю возможность сделать три вывода, ставшие важнейшими вехами становления генетики.
Читать дальше
Конец ознакомительного отрывка
Купить книгу