Когда произошла легендарная история с яблоком – именно в 1666 году или нет, – в сущности, неважно; главное – эта легенда сильно недооценивает гениальность и уникальную глубину аналитического мышления Ньютона [72] Дэвид Брюстер в биографии Ньютона писал: «Знаменитая яблоня, падение одного из плодов которой, как говорят, привлекло внимание Ньютона к тяготению, года четыре назад была повалена ветром, однако мистер Тернор [владелец дома Ньютона в Вулсторпе] сохранил ее, сделав из нее кресло» (Brewster 1831).
.
Хотя нет никаких сомнений, что первую свою рукопись о теории гравитации Ньютон написал до 1669 года, ему не нужно было своими глазами увидеть падение яблока, чтобы понять, что Земля притягивает тела вблизи своей поверхности. Да и формулировка закона всемирного тяготения не могла опираться исключительно на зрелище падающего яблока. Более того, многое указывает, что некоторые важнейшие понятия, без которых Ньютон не мог заявить о существовании универсальной силы тяготения, сложились лишь к 1684–85 годам. Идеи такого масштаба в анналах науки столь редки, что даже человек феноменального интеллекта – такой как Ньютон – мог прийти к ней лишь посредством длинной цепочки интеллектуальных шагов.
Все началось, вероятно, еще в юности Ньютона, при крайне неудачном знакомстве с «Началами» Евклида, объемистым трактатом по геометрии [73] О том, как Ньютон изучал математику, хорошо рассказано в книге Hall 1992.
. По признанию самого Ньютона, сначала он «читал только формулировки теорем», поскольку, по его мнению, они были до того очевидны, что он «не понимал, кому может быть интересно писать для них доказательства». Первой теоремой в трактате, которая заставила его задуматься и написать несколько строчек рассуждений, была теорема о том, что «в прямоугольном треугольнике квадрат гипотенузы равен квадратам двух других сторон» – теорема Пифагора. Как ни странно, хотя Ньютон во время обучения в Колледже Св. Троицы в Кембридже читал книги по математике, многие работы, доступные в его время, прошли мимо него. Очевидно, они ему были просто не нужны!
Пожалуй, самое сильное влияние на направление математической и научной мысли Ньютона оказала именно «Геометрия» Декарта. Ньютон прочитал ее в 1664 году и перечитывал несколько раз, пока «постепенно не овладел всем ее содержанием». Идея функций и их свободных переменных обеспечивала гибкость, которая и открыла перед Ньютоном поистине безграничные возможности. Аналитическая геометрия не только проложила Ньютону путь к дифференциальному и интегральному исчислению, а тем самым и к изучению свойств функций, их графиков и касательных к ним – она воспламенила у Ньютона исследовательский дух. Позади остались занудные построения при помощи циркуля и линейки – на смену им пришли произвольные кривые, выраженные алгебраически. Затем, в 1665–66 годах, на Лондон обрушилась страшная эпидемия чумы. Когда количество жертв за неделю достигло нескольких тысяч человек, колледжи Кембриджа пришлось закрыть. Ньютон был вынужден оставить занятия и вернуться домой в далекую деревушку Вулсторп. Там, в сельской тиши, Ньютон предпринял первую попытку доказать, что сила, которая удерживает Луну на орбите вокруг Земли, и тяготение Земли – та самая сила, из-за которой падают яблоки, – на самом деле одно и то же. Ньютон описал свои первые подступы к закону всемирного тяготения в заметке, написанной около 1714 года [74] Эта заметка хранится в архиве графа Портсмута. Есть и другие документы, заставляющие сделать вывод, что Ньютон и в самом деле обдумывал закон всемирного тяготения, обратно пропорционального квадрату расстояния, во время эпидемии чумы. См., например, Whiston 1753.
.
И вот в том же [1666] году я задумался о силе тяготения, которая простирается до самой орбиты Луны, и, обнаружив, как рассчитать силу, с которой шар, вращающийся внутри сферы, давит на поверхность сферы, по закону Кеплера, согласно которому квадраты периодов вращения планет относятся как кубы их расстояний от центров орбит, я вывел, что силы, удерживающие планеты на орбитах, должны быть обратно пропорциональны квадратам их расстояний от центров, вокруг которых они вращаются, и таким образом сравнил силу, требуемую для удержания Луны на орбите, с силой тяготения на поверхности Земли, и ответы оказались почти одинаковыми. А было это в два чумные года, 1665 и 1666, ведь именно тогда я был в том возрасте, который более всего способствует изобретательности, и математика и философия увлекали меня особенно сильно.
Читать дальше
Конец ознакомительного отрывка
Купить книгу