Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса

Здесь есть возможность читать онлайн «Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2016, ISBN: 2016, Издательство: Литагент АСТ, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Альберт Эйнштейн писал: «Как так получилось, что математика, продукт человеческой мысли, независимый от опыта, так прекрасно соотносится с объектами физической реальности?» Наука предлагает абстрактную математическую модель, а спустя какое-то время (иногда десятилетия) выясняется, что эта модель существует в реальности! Так кто же придумал математику – мы сами или Вселенная? Может быть, математика – язык, на котором говорит с нами мироздание?
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рассмотрим следующее простое и понятное утверждение. Каждое четное целое число больше двух можно представить в виде суммы двух простых чисел (делящихся только на себя и единицу). Это несложное на первый взгляд утверждение называется проблемой Гольдбаха , поскольку именно в такой формулировке обнаружено в письме прусского математика-любителя Кристиана Гольдбаха (1690–1764) Леонарду Эйлеру от 7 июня 1742 года. Убедиться в верности этого утверждения для первых нескольких четных чисел совсем не трудно: 4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 10 = 3 + 7 (или 5 + 5); 12 = 5 + 7; 14 = 3 + 11 (или 7 + 7); 16 = 5 + 11 (или 3 + 13) и так далее. Утверждение это до того просто, что британский математик Г. Г. Харди объявил, что «любой дурак мог бы догадаться». Более того, французский математик и философ Рене Декарт высказал это предположение еще до Гольдбаха. Однако выяснилось, что сформулировать проблему легко, а вот доказать – совсем другое дело. В 1966 году китайский математик Чэнь Цзинжунь сделал существенный шаг по пути к доказательству. Он сумел показать, что всякое достаточно большое четное число представляет собой сумму двух чисел, одно из которых простое, а второе имеет не более двух простых делителей. К концу 2005 года португальский ученый Томаш Оливейра э Сильва показал, что это утверждение верно для чисел, не превышающих 3 × 10 17(до трехсот тысяч триллионов). И все же, несмотря на колоссальные усилия многих талантливых математиков, на сегодняшний день, когда я пишу эти строки, общее доказательство так и не удалось найти. К желаемому результату не привел даже дополнительный стимул в виде миллиона долларов, которые предложили в виде награды всякому, кто найдет доказательство в срок с 20 марта 2000 года по 20 марта 2002 года (в рамках рекламной кампании романа А. К. Доксиадиса «Дядюшка Петрос и проблема Гольдбаха» [Doxiadis 2000]).

Тут-то перед нами и встает вопрос о значении «объективной истины» в математике. Предположим, что в 2016 году все же будет представлено строгое доказательство проблемы Гольдбаха. Можно ли будет тогда сказать, что это утверждение было верным уже тогда, когда о нем задумался Декарт? Многие, наверное, согласятся, что это глупый вопрос. Ясно, что если истинность утверждения доказана, значит, оно всегда было истинным, даже до того, как мы в этом убедились. Или рассмотрим другой невинный на вид пример – гипотезу Каталана (подробнее см. Ribenboim 1994 ). Числа 8 и 9 – последовательные целые числа, и каждое из них равно степени натурального числа – 8 = 2 3и 9 = 3 2. В 1844 году бельгийский математик Эжен Шарль Каталан (1814–1894) предположил, что среди всех возможных степеней целых чисел лишь одна пара последовательных чисел, за исключением 0 и 1, представляет собой степени других целых чисел, и это 8 и 9. Иными словами, можно хоть всю жизнь записывать все целые степени, однако не найдешь другой пары таких чисел, которые различаются на 1. На самом деле, еще в 1342 году франко-еврейский философ и математик Леви бен Гершом (1288–1344) доказал малую часть этой гипотезы: он показал, что 8 и 9 – это единственные степени 2 и 3, которые различаются на 1. Большой шаг вперед был сделан математиком Робертом Тейдеманом в 1976 году. И все же доказательство гипотезы Каталана в общем виде ставило в тупик лучшие математические умы вот уже более 150 лет. Но вот наконец 18 апреля 2002 года румынский математик Преда Михайлеску представил полное доказательство гипотезы. Оно было опубликовано в 2004 году и на сегодня полностью принято математическим сообществом. И снова можно задаться вопросом: когда гипотеза Каталана стала истинной: в 1342 году? В 1844? В 1976? В 2002? В 2004? Разве не очевидно, что это утверждение всегда было истинным, хотя мы не знали, что оно истинно? Именно такого рода утверждения платоники и называют «объективными истинами».

Некоторые математики, философы, специалисты по когнитивной психологии и другие «потребители» математики, например программисты, считают платоновский мир плодом воображения чересчур мечтательных умов (такую точку зрения и другие догмы мы еще обсудим подробнее на страницах этой книги, в главе 9). Более того, в 1940 году знаменитый историк математики Эрик Темпл Белл (1883–1960) сделал вот какое предсказание (Bell 1940).

Согласно пророкам, последний приверженец платоновских идеалов разделит участь динозавров к 2000 году. И тогда к математике, лишившейся мифического покрова этернализма, будут относиться именно как к той науке, какой она была всегда, – к языку, изобретенному людьми с определенной целью, которую они сами себе поставили. Последний храм абсолютной истины исчезнет, а вместе с ним исчезнет и ничто, которое в нем свято оберегали.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Представляем Вашему вниманию похожие книги на «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса»

Обсуждение, отзывы о книге «Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x