Раскин утверждал, что «основы математики заложены давным-давно в наших предках, возможно, за миллионы поколений до нас». Однако я должен сказать, что мне этот аргумент не кажется таким уж убедительным. Даже если логика была укоренена в мозге наших предков, непонятно, каким образом эта способность могла привести к отвлеченным математическим теориям субатомного мира, например, к квантовой механике с ее невообразимой точностью.
Примечательно, что Хэмминг завершил свою статью допущением, что «всех объяснений, которые я привел, совокупно все равно не хватает, чтобы объяснить то, о чем я веду здесь речь» (то есть непостижимую эффективность математики).
Неужели нам придется в заключение сделать вывод, что эффективность математики так и остается загадкой и с начала книги ничего не изменилось?
Прежде чем опускать руки, давайте попробуем вычленить суть загадки Вигнера, а для этого рассмотрим так называемый научный метод . Сначала ученые узнают различные факты о природе посредством наблюдений и экспериментов. Эти факты прежде всего ложатся в основу каких-то качественных моделей изучаемого явления (например, Земля притягивает яблоки, элементарные частицы при столкновении способны порождать другие частицы, Вселенная расширяется и так далее). Во многих областях естественных наук теории вполне могут даже развиваться, оставаясь нематематическими. Один из лучших примеров прекрасной, многое объясняющей теории такого рода – это дарвинова теория эволюции. Хотя идея естественного отбора не основана ни на каких математических формулах, она достигла замечательных успехов в объяснении происхождения видов. А вот в фундаментальной физике следующим шагом обычно становится попытка построить математическую, количественную теорию (например, общую теорию относительности, квантовую электродинамику, теорию струн и так далее). Наконец, исследователи, опираясь на эти математические модели, предсказывают новые явления, новые частицы и результаты еще не проводившихся экспериментов и наблюдений. Вигнера и Эйнштейна удивлял и восхищал именно невероятный успех последних двух процессов. Как так получается, что физикам раз за разом удается находить математические инструменты, которые не просто объясняют уже существующие результаты экспериментов и наблюдений, но и приводят к совершенно новым озарениям и предсказаниям?
Чтобы ответить на этот вопрос, приведу прекрасный пример, который придумал математик Реубен Херш. Херш предполагал, что, как это делается в многих подобных случаях в математике (и, разумеется, в теоретической физике), нужно разбирать простейший возможный случай [167] См. превосходную статью Херша в сборнике Hersh 2000.
. Рассмотрим тривиальный на первый взгляд эксперимент: будем класть черные и белые шарики в непрозрачный кувшин. Представьте себе, что сначала вы кладете четыре белых камешка, а потом семь черных. В какой-то момент в истории человечества люди поняли, что для некоторых целей можно описывать собрание шариков любого цвета абстрактным понятием, которое они изобрели, – натуральным числом. То есть собрание белых камешков можно связать с числом 4 (или IIII, или IV – на этом месте может стоять любой символ, каким пользовались в те времена), а черных – с числом 7. Посредством экспериментов первого типа, о которых я писал выше, люди также открыли, что другое изобретенное ими понятие, арифметическое действие сложения, точно описывает физический акт объединения. Иначе говоря, результат абстрактного процесса, символически обозначаемого как 4 + 7, однозначно предсказывает, каково будет в итоге количество шариков в кувшине.
Что все это значит? Это значит, что люди разработали потрясающий математический инструмент – способ надежно предсказывать результат любых экспериментов подобного рода! И инструмент этот совсем не так тривиален, как может показаться, поскольку он не подходит, к примеру, для капель воды. Если накапать в кувшин четыре капли воды, а потом добавить еще семь, одиннадцать отдельных капель не получится. Более того, чтобы делать прогнозы относительно результатов подобных экспериментов с жидкостями (или газами), людям пришлось изобрести совершенно другие понятия, например вес, и понять, что нужно взвешивать отдельно каждую каплю воды или какой-то объем газа.
Мораль ясна. Математические инструменты выбирались не произвольно, а вполне целенаправленно – исходя из того, насколько точно они способны предсказывать результаты тех или иных экспериментов и наблюдений. Так что, по крайней мере, в этом случае, очень простом, их эффективность, в сущности, гарантирована.
Читать дальше
Конец ознакомительного отрывка
Купить книгу