Последнее предложение намекает, что мы должны понять значение частоты. В этой главе мы уже встречались с законом сохранения энергии, и это один из самых несомненных законов физики. Сохранение энергии означает, что если электрон в атоме водорода (или в прямоугольной яме) обладает определенной энергией, то эта энергия не может измениться, пока «что-то не произойдет». Иными словами, электрон не может спонтанно изменить свою энергию без какой-либо причины. Кажется, что это не очень интересно, но сравните это со случаем, когда известно, что электрон находится в определенной точке. Как мы все хорошо знаем, он теперь будет перемещаться по всей Вселенной в долю секунды, переводя бесконечное число циферблатов. Но поведение циферблатов для стоячей волны будет иным. Структура циферблатов сохранит свою форму, и все стрелки будут счастливо вращаться, пока что-либо не нарушит их хода. Неизменная природа стоячих волн, таким образом, делает их очевидным кандидатом на описание электрона с определенной энергией.
Сделав шаг, связывающий частоту стоячей волны с энергией частицы, теперь мы можем использовать наше представление о гитарных струнах и предположить, что более высокие частоты должны соответствовать б о льшим энергиям. Дело в том, что высокая частота подразумевает меньшую длину волны (поскольку короткие струны вибрируют быстрее), и мы, изучив конкретный случай прямоугольной потенциальной ямы, можем ожидать, что более короткая длина волны соответствует частице с большей энергией – по уравнению де Бройля. Таким образом, можно сделать важный вывод, который необходимо запомнить: стоячие волны описывают частицы с определенной энергией, и чем больше энергия, тем быстрее идут стрелки часов .
Резюмируем: если электрон удерживается потенциалом, то его энергия квантуется. На физическом жаргоне это звучит так: удерживаемый электрон может существовать только на определенных «энергетических уровнях». Минимально возможная энергия электрона соответствует его описанию только одной стоячей волной «основного тона» [29], и этот энергетический уровень обычно называют основным состоянием . Энергетические уровни, соответствующие стоячим волнам с более высокими частотами, носят название возбужденных состояний .
Представим электрон с определенной энергией, удерживаемый в прямоугольной потенциальной яме. Мы говорим, что он «находится на определенном энергетическом уровне» и его квантовая волна связана с единственным значением n . Выражение «находится на определенном энергетическом уровне» отражает тот факт, что электрон в отсутствие любых внешних влияний не делает ничего. Обобщим: электрон можно описать сразу многими стоячими волнами, как звук гитары состоит из многих гармоник. Это значит, что в общем случае электрон не имеет конкретной энергии.
Важно, что при измерении энергии электрона всегда будет получаться величина, равная той, которая связана с одной из составляющих стоячих волн. Чтобы вычислить вероятность нахождения электрона с конкретной энергией, мы должны взять циферблаты, связанные с конкретной составляющей общей волновой функции, возвести их в квадрат и сложить. От получившегося числа и зависит вероятность нахождения электрона в этом конкретном энергетическом состоянии. Сумму всех таких вероятностей (одна для каждой составляющей стоячей волны) должна в итоге получиться равной единице, и это лучшая иллюстрация того, что энергия частицы всегда будет соответствовать конкретной стоячей волне.
Сразу скажем, что электрон может одновременно иметь несколько различных энергий, и это утверждение ничуть не менее странное, чем то, что он имеет множество положений. Конечно, дочитав книгу до этого момента, стресс вы вряд ли испытаете, но для нашего повседневного восприятия это все равно шок. Заметьте, что есть критически важная разница между удерживаемой квантовой частицей и стоячими волнами в бассейне или на гитарной струне. Идея квантования волны на гитарной струне вовсе не странна, потому что волна, которая, собственно, описывает вибрирующую струну, одновременно состоит из многих разных стоячих волн, и все они физически составляют общую энергию волны. Так как смешивать их можно любым образом, действительная энергия вибрирующей струны может принимать вообще любое значение. Однако для электрона, запертого внутри атома, относительный вклад каждой стоячей волны описывает вероятность того, что электрон будет обнаружен с некой конкретной энергией.
Читать дальше
Конец ознакомительного отрывка
Купить книгу