Рис. 6.4. Мяч лежит в долине. Высота над уровнем моря прямо пропорциональна потенциалу, воздействию которого подвергается движущаяся частица
Этот пример очень важен, потому что в прямом смысле демонстрирует форму потенциала [23].
Однако идея имеет более общее содержание и работает в том числе и для потенциалов, созданных не гравитацией и не впадинами на земной поверхности. Примером служит электрон, оказавшийся в прямоугольной яме. В отличие от случая с мячом в долине, высота стенок ящика не может быть точной высотой чего бы то ни было; скорее, можно говорить, что она соответствует скорости, с которой должен двигаться электрон, чтобы выбраться из ямы. В случае с долиной аналогом этого будет быстрое движение мяча, при котором он взлетит выше стен и выскочит из ямы. Если электрон движется достаточно медленно, точная высота потенциала не имеет особого значения, и можно уверенно предположить, что движение электрона ограничено внутренней частью ямы.
Теперь сосредоточимся на электроне, замкнутом в ящике, который описывается прямоугольной потенциальной ямой. Поскольку он не может вырваться из ящика, квантовые волны должны упасть до нуля у его стенок. Три возможные квантовые волны с наибольшими длинами будут полностью аналогичны волнам, созданным гитарной струной и показанным на рис. 6.2: самая длинная волна будет иметь двойной размер по сравнению с ящиком, то есть 2 L ; следующая по длине волна будет равна размеру ящика – L ; а следующая – 2 L / 3. В общем случае мы можем описать электронные волны формулой 2 L / n , где n = 1, 2, 3, 4 и т. д.
Таким образом, для нашего прямоугольного ящика электронные волны будут иметь точно такую же форму, что и волны на гитарной струне: это будут волны-синусоиды с четко определенным набором разрешенных длин. Теперь можно двинуться вперед, призвав на помощь уравнение де Бройля из предыдущей главы и связав длину этих волн-синусоид с импульсом электрона: p = h / λ . В этом случае стоячие волны описывают электрон, которому разрешено иметь лишь определенные импульсы, заданные формулой p = nh / ( 2 L) , где все, что нам остается, – подставить разрешенные длины волны в уравнение де Бройля.
Получается, что импульс нашего электрона в прямоугольной яме квантуется. Это уже большое достижение. Однако надо быть осторожными: потенциал на рис. 6.3 – специфический случай, для других потенциалов стоячие волны обычно не синусоидальные. На рис. 6.5 показана фотография стоячих волн, созданных барабаном. Кожа барабана усыпана песком, который собирается в узлах стоячей волны. Так как кайма вибрирующего барабана круглая, а не прямоугольная, стоячие волны уже не будут синусоидами [24]. Это значит, что в более реалистичной ситуации, когда электрон пойман протоном, стоячие волны тоже не будут синусоидами. В свою очередь, это подразумевает, что связь между длиной волны и импульсом утеряна. И как в этом случае интерпретировать стоячие волны? Что если у пойманных частиц квантуется не импульс?
Рис. 6.5. Вибрирующий барабан покрыт песком. Песок собирается в узлах стоячих волн
Мы можем найти ответ, если заметим, что в прямоугольной потенциальной яме квантуется не только импульс электрона, но и его энергия. Это простое наблюдение, кажется, не содержит никакой новой важной информации, поскольку энергия и импульс прямо связаны друг с другом, а именно энергия E = p ² / 2 m , где p – импульс удерживаемого электрона, а m – его масса [25]. Но это наблюдение не такое уж бесполезное, как можно подумать, потому что для потенциалов не столь простых, как прямоугольная яма, каждая стоячая волна всегда соотносится с частицей определенной энергии.
Важное различие между энергией и импульсом появляется потому, что уравнение E = p ² / 2 m верно, только если потенциал одинаков по всей области вероятного пребывания частицы и позволяет ей двигаться свободно, как по мраморной столешнице или, что больше относится к делу, как электрону в прямоугольной яме. В общем случае энергия частицы не будет сводиться к E = p ² / 2 m ; это будет сумма кинетической и потенциальной энергий частицы. Так разрушается прямая связь между энергией частицы и ее импульсом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу