Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Здесь есть возможность читать онлайн «Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Аттикус, Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О том, чего мы не можем знать. Путешествие к рубежам знаний: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О том, чего мы не можем знать. Путешествие к рубежам знаний»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О том, чего мы не можем знать. Путешествие к рубежам знаний», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Я не думаю, что мы живем в таком вот «Шоу Трумана». Я не думаю, что, отправившись в космос, можно неожиданно натолкнуться на стенку студии или на окружающий мир небесный свод, подобный моей модели. И мне кажется, что большинство людей со мной согласятся. В конце концов, такая модель только поднимает вопрос о том, что находится за этим пределом. Встретим ли мы там небесную съемочную группу, наблюдающую за нами? А что случится с этой съемочной группой, если она отправится в такое же путешествие в своем мире? Там что, съемочные группы до самого конца? Поэтому большинство из нас, будучи поставлено перед этим вопросом, заключает, что единственное возможное решение этой головоломки – бесконечная Вселенная.

Но у математиков есть еще и третий вариант, согласно которому Вселенная может не иметь границы, но тем не менее быть конечной. В такой Вселенной космическое путешествие не продолжается бесконечно далеко, но в конце концов возвращается в свою начальную точку подобно кругосветному путешествию на Земле.

Чтобы понять, как такая Вселенная может быть устроена, полезно рассмотреть маленькую игрушечную вселенную. Игра «Астероиды», созданная в 1979 г. компанией Atari, дает превосходный пример конечной, но неограниченной двумерной вселенной. Эта вселенная состоит всего из одного компьютерного экрана, но, когда космический корабль доходит до верхнего края экрана, он не отражается от границы на манер двумерного «Шоу Трумана», а тут же появляется в самом низу. С точки зрения астронавтов, летящих в этом корабле, они совершают бесконечное космическое путешествие. То же происходит и при приближении корабля к левому краю экрана: он не врезается в стенку, а просто появляется на правом краю. Астронавты могут начать замечать повторяющиеся ориентиры, хотя, конечно, в условиях динамической вселенной узнавать одни и те же объекты, мимо которых они пролетают во второй или третий раз, может быть непросто.

На самом деле вселенная «Астероидов» имеет вполне определенную форму. Если допустить существование третьего измерения, в котором эту вселенную можно сложить, то, соединив верхний и нижний края экрана, мы получим цилиндр. Поскольку левый и правый края экрана также смыкаются, можно соединить два конца такого цилиндра и получить объект в форме бублика, который математики называют тором. Поверхность этого трехмерного тела и есть конечная вселенная игры «Астероиды».

Если взять любое конечное трехмерное тело, его двумерная поверхность образует альтернативную вселенную, конечную и не имеющую границ. Еще один пример такой двумерной вселенной дает поверхность сферы. Такие двумерные вселенные – не просто математические игрушки: они дают ключ к путешествиям по поверхности Земли. Многие культуры по всему миру задавались одним и тем же вопросом: бесконечна ли Земля, или же она имеет край, с которого можно упасть? Многие цивилизации представляли Землю в виде диска, окруженного водой, – наподобие мира Трумана.

Идея сферической Земли начала утверждаться лишь у пифагорейцев в V в. до н. э. Исчезновение кораблей за горизонтом, форма тени, отбрасываемой Землей на Луну во время затмений, изменение положения Солнца и звезд по мере продвижения на юг – все это способствовало такому сдвигу мировоззрения. Кругосветная экспедиция, организованная в 1519 г. Фернаном Магелланом (сам он погиб в этом путешествии), окончательно и несомненно доказала, что Земля имеет форму шара.

А как же Вселенная? Имеет ли она форму? Мы находимся примерно в том же положении, что и культуры древности, которые размышляли о форме Земли и хотели узнать, продолжается ли она бесконечно, или имеет край, или же может быть каким-то образом замкнута.

Но как можно сложить трехмерную вселенную, чтобы она имела конечный объем, но не имела краев? Тут может помочь математика, которая позволяет встроить нашу трехмерную Вселенную в пространство, имеющее большее число измерений, и сложить ее так же, как мы сложили мир игры «Астероиды». Хотя физически представить себе такое складывание невозможно, язык математики дает нам уравнения, позволяющие описать такие конечные трехмерные вселенные и, что еще более существенно, изучить их свойства.

Например, мы можем жить в трехмерной версии игры «Астероиды». Возможно, Вселенная, по существу, представляет собой гигантский куб с шестью гранями, подобный нашей игральной кости. Когда космический корабль достигает одной из этих граней, он плавно выходит из кубической вселенной через одну грань и вновь появляется на ее противоположной грани. В «Астероидах» было два замкнутых направления – влево-вправо и вверх-вниз. В трехмерной кубической вселенной должно быть замкнуто и третье направление. Если такой куб поместить в четырехмерную вселенную, его можно сложить, смыкая его грани, и получить четырехмерный бублик, он же тор, трехмерная поверхность которого и есть наша Вселенная.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Представляем Вашему вниманию похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктория Токарева - О том, чего не было (сборник)
Виктория Токарева
libcat.ru: книга без обложки
Виктория Токарева
libcat.ru: книга без обложки
Григорий Горин
Отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Обсуждение, отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x