Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Здесь есть возможность читать онлайн «Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Аттикус, Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

О том, чего мы не можем знать. Путешествие к рубежам знаний: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «О том, чего мы не можем знать. Путешествие к рубежам знаний»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «О том, чего мы не можем знать. Путешествие к рубежам знаний», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Электроны на выброс: фотоэлектрический эффект

Металлы так хорошо проводят электричество потому, что в них имеется множество свободных электронов, способных перемещаться внутри металла. Поэтому, направив на кусок металла электромагнитное излучение, можно выбить из него такие электроны. Энергия волны передается электрону, и его собственная энергия возрастает настолько, что он может преодолеть силы, удерживающие его внутри металла. Именно этот процесс был ключевым элементом открытия электрона Томсоном, описанного на предыдущем «рубеже».

Если считать электромагнитное излучение волной, то должна существовать возможность увеличить энергию такой волны до того уровня, на котором она сможет выбить из металла электрон. Чем выше энергия волны, тем более сильный толчок получит электрон и тем большей будет скорость его вылета. Как было описано в предыдущем разделе, есть два способа увеличить энергию волны – или вибрирующей струны виолончели. Один состоит в повышении частоты волны, в ускорении вибрации. Если поступить таким образом, то, действительно, скорость выбиваемых электронов соответственно возрастает. Но если сохранять частоту неизменной, то увеличить энергию можно путем повышения амплитуды волны, то есть громкости звука струны. Странность заключается в том, что увеличение интенсивности волн при постоянной частоте, оказывается, не влияет на скорость, с которой вылетают электроны. Вместо этого возрастает число электронов, выбиваемых из металла.

Более того, уменьшая частоту волны при одновременном увеличении амплитуды, суммарную энергию можно поддерживать на постоянном уровне, и тем не менее в некоторой точке такая волна, по-видимому, утрачивает способность к выбиванию электронов. Существуют такие частоты, ниже которых, как бы громко я ни играл на виолончели, энергия не выбивает ни одного электрона. Напротив, в случае высокочастотной волны громкость можно уменьшать сколько угодно: даже волна чрезвычайно низкой интенсивности по-прежнему способна выбивать электроны. Что происходит? Как объяснить такое странное поведение, известное в науке под названием фотоэлектрического эффекта?

Решение заключается в смене модели. До сих пор мы рассматривали процесс, на входе которого была волна, а на выходе – частица. Что, если попробовать другой вариант: частица на входе и частица на выходе? Возможно, ключевой элемент понимания действия падающего электромагнитного излучения следует искать в его корпускулярной природе.

Именно в этом и состоял коренной сдвиг мировоззрения, совершенный Эйнштейном в 1905 г., который многие называют annus mirabilis . В этом же году он предложил специальную теорию относительности, за которую мы возьмемся на одном из следующих «рубежей», а также теорию броуновского движения, обеспечившую самую убедительную поддержку идеи атомарного устройства материи, как было описано в предыдущей главе.

Эйнштейн предположил, что электромагнитное излучение или свет следует уподобить не волне, а пулеметной очереди, состоящей из мельчайших бильярдных шаров, в точности как предлагал еще Ньютон. Энергия каждой отдельной частицы зависит от частоты излучения. Эта новая идея дает нам модель, идеально описывающую те результаты, которые мы наблюдали в лаборатории. Каждый бильярдный шарик света имеет энергию, соответствующую минимальной энергии, вычисленной Планком для объяснения поведения излучения в печи. Так, электромагнитное излучение с частотой ν в модели Эйнштейна следует рассматривать как набор шариков, каждый из которых имеет энергию, равную h ν. Введенные Планком скачки энергии попросту соответствуют добавлению к излучению новых световых шариков. Эйнштейн назвал такие шарики квантами света, но в середине 1920-х гг. они получили новое название, и теперь мы знаем их под именем фотонов.

Фотонный бильярд

Как же такая корпускулярная модель света объясняет поведение электронов, выбиваемых из металла? Снова представим взаимодействие как бильярдную игру. Фотоны сталкиваются с поверхностью металла. Если фотон попадает в электрон, электрону передается энергия, и электрон улетает. Но, чтобы быть выбитым из металла, электрон должен получить определенное количество энергии.

Энергия каждого налетающего фотона зависит только от частоты светового излучения. Если частота излучения слишком мала, то энергии каждого налетающего фотона недостаточно для выбивания электрона. Интенсивность излучения можно увеличивать сколько угодно: от этого возрастает число шариков, налетающих на металл, но энергия каждого отдельного шарика остается той же. Вероятность попадания в электрон увеличивается, но, поскольку каждый шарик так же бессилен, как и все остальные, электрон так и останется невыбитым. В волновой модели электрон постепенно накапливал бы поступающую энергию до тех пор, пока она не станет достаточной для его вылета. В корпускулярной модели электрон можно толкать сколько угодно раз, но ни один из таких толчков не будет достаточно сильным, чтобы выбить его. Точно так же можно слегка тыкать человека пальцем: сколько бы ни было таких слабых прикосновений, человек от них не упадет.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Представляем Вашему вниманию похожие книги на «О том, чего мы не можем знать. Путешествие к рубежам знаний» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктория Токарева - О том, чего не было (сборник)
Виктория Токарева
libcat.ru: книга без обложки
Виктория Токарева
libcat.ru: книга без обложки
Григорий Горин
Отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний»

Обсуждение, отзывы о книге «О том, чего мы не можем знать. Путешествие к рубежам знаний» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x