Осознание невозможности познания
Мэй, родившийся в 1938 г. в Австралии, сначала учился физике и работал в области сверхпроводимости. Но в конце 1960-х гг. в его научной работе произошел резкий поворот, когда он познакомился с вновь образованным движением социальной ответственности в науке. Его интересы переместились с поведения групп электронов на более актуальные вопросы закономерностей динамики популяций животных. В то время биология еще не была естественной средой для человека с математическим складом ума, но работы Мэя впоследствии изменили это положение. Его великое открытие стало возможным благодаря сочетанию строгого математического образования, которое он получил как физик, и нового интереса к проблемам биологии.
В опубликованной в 1976 г. в журнале Nature статье под названием «Простые математические модели с чрезвычайно сложной динамикой» [28]Мэй рассмотрел динамику математического уравнения, описывающего циклический рост популяции. Он показал, что даже вполне невинно выглядящее уравнение может давать численные результаты с необычайно сложным поведением. Его формула популяционной динамики была не каким-нибудь сложным дифференциальным уравнением, а простым дискретным уравнением с обратной связью, которое мог обсчитать кто угодно при помощи карманного калькулятора.
Уравнение динамики популяции с обратной связью
Рассмотрим популяцию животных, численность которой может варьироваться от нуля до некоторого гипотетического максимального значения, обозначенного N . Существует некоторая доля Y этого максимума (лежащая между 0 и 1), определяющая в уравнении, какая часть популяции выживет к следующему циклу с учетом воспроизводства и борьбы за пищевые ресурсы. Предположим, что коэффициент воспроизводства в каждом цикле равен r . Тогда, если доля максимальной численности популяции, выжившая к концу цикла, была равна Y , то численность следующего поколения составит r · Y · N .
Но выживут не все вновь появившиеся животные. Согласно этому уравнению, доля не выживших животных также будет равна Y . То есть из r · Y · N животных, существовавших в начале цикла, умрет Y ( r · Y · N ). Значит, всего к концу цикла останется в живых ( r · Y · N ) – ( r · Y 2 · N ) = [ r · Y (1 – Y )] · N животных, а доля максимальной численности популяции, существующая в текущем цикле, равна r · Y (1 – Y ).
По сути дела, эта модель предполагает, что произведение численности выжившей к концу каждого цикла части популяции на постоянный коэффициент r , называемый коэффициентом воспроизводства, дает число животных, существующих в начале следующего цикла. Но необходимых для выживания ресурсов на всех не хватает. Поэтому уравнение вычисляет, какая часть этих животных доживет до конца цикла. Полученное число выживших животных снова умножают на коэффициент r , что дает численность следующего поколения. Интересная особенность этого уравнения состоит в том, что его поведение сильно зависит от выбора значения r , коэффициента воспроизводства. Некоторые значения r дают в высшей степени непредсказуемое поведение. Мы можем точно знать, как будут изменяться значения. Но существует некий предел, за которым они полностью выходят из-под контроля. Знание внезапно оказывается недостижимым, так как добавление всего одного лишнего животного может привести к резкому изменению динамики численности популяции.
Например, Мэй выяснил, что при значениях r от 1 до 3 численность популяции в конце концов стабилизируется. В этом случае, каковы бы ни были начальные условия, численность будет постепенно стремиться к некоторому постоянному значению, зависящему от величины r . Это похоже на игру на бильярде, в центре которого устроена воронка. Куда бы я ни запустил шар, рано или поздно он окажется на дне воронки.
При r , бо́льших 3, также обнаруживается участок предсказуемого поведения, но несколько другого типа. При значениях r от 3 до
(что приблизительно равно 3,44949) численность популяции, по сути дела, скачет взад и вперед между двумя значениями, зависящими от r . Когда r становится больше
, характер динамики популяции снова изменяется. При значениях r от
до 3,54409 (точнее, до корня алгебраического уравнения 12-й степени) существуют уже четыре значения, которых периодически достигает численность популяции. При дальнейшем увеличении r таких значений становится 8, потом 16 и т. д. По мере роста r число разных значений каждый раз удваивается, пока мы не дойдем до порога, за которым динамика превращается из периодической в хаотическую.
Читать дальше
Конец ознакомительного отрывка
Купить книгу