Про частицы, обладающие ненулевым спином, в зависимости от его проекции на направление движения говорят, что они имеют правую или левую спиральность, словно бы частица была закручена в направлении движения или в противоположном направлении [25]. Но спиральность относительна: если у вас есть частица с правой спиральностью, вы всегда сможете бежать быстрее нее, и, обернувшись, вы увидите, что знак спиральности частицы сменился на противоположный. Спиральность зависит от системы отсчета, в которой она измеряется [26].
Это проблема. Спиральность зависит от системы отсчета наблюдателя – это означает, что она не реальна. Не существует истинного различия между частицами с левой и правой спиральностями. И все же эксперименты в конце пятидесятых годов показали, что слабые ядерные взаимодействия, в которых участвуют кварки и электроны, действуют по-разному на лево– и правоспиральные частицы, бросая тем самым дерзкий вызов главному принципу теории Эйнштейна и его современному воплощению в виде калибровочной симметрии. Отразите пространство-время в зеркале, поменяйте местами лево и право, и вы увидите другой мир. Как если бы левое и правое имело какое-то значение. Как если бы они были инвариантами. Почему при слабых взаимодействиях спиральность проявляет себя как инвариантное свойство материи, когда оно в действительности зависит от наблюдателя?
Существует только одна возможность: если частицы движутся со скоростью света, то никто и никогда не может их обогнать; иными словами, во всех системах отсчета левоспиральные частицы останутся левоспиральными, а правоспиральные частицы – правоспиральными. Даже несмотря на то что спиральность принципиально зависит от системы отсчета наблюдателя, левоспиральность и правоспиральность в данном случае будут всегда проявляться как инвариантное свойство материи.
Казалось бы, это достаточно простое решение проблемы: просто все кварки и электроны должны перемещаться со скоростью света. Но основная загвоздка состоит в том, что кварки и электроны обладают массой. Вы не можете одновременно обладать массой и перемещаться со скоростью света – даже крошечный вес заставит вас замедлить скорость. Если частицы движутся медленнее, чем свет, то получается, что мы не можем объяснить, почему слабое взаимодействие предпочитает левоспиральные частицы, не нарушая при этом калибровочную симметрию.
Картина меняется, если у вас есть хиггсовское поле. Физики предположили [27]существование скалярного поля, всюду заполняющего пространство-время таким образом, что при взаимодействии с ним знак спиральности у частиц меняется на противоположный. Так, слабое взаимодействие только думает , что оно действует исключительно на левоспиральные частицы, а хиггсовское поле в фоновом режиме меняет правое с левым, из-за чего в слабом взаимодействии участвуют и правоспиральные, и левоспиральные в равной степени. Теперь вы можете отразить пространство-время в зеркале, и мир от этого не изменится. Благодаря хиггсовскому полю такие частицы, как кварки и электроны, могут иметь массу, не нарушая калибровочной симметрии.
Если вы внимательно посмотрите на то, что делает бозон Хиггса, вы заметите, что со временем происходит что-то странное. Когда левоспиральный электрон взаимодействует с хиггсовским полем, он переходит в правоспиральный антипозитрон. А антипозитрон – это не что иное, как электрон в системе отсчета, в которой стрела времени развернута вспять.
Два наблюдателя всегда придут к единому мнению об очередности событий во времени, если они происходят в области, в которой световые конусы наблюдателей перекрываются. Они могут не прийти к единому мнению о том, в какой момент времени происходят события, но они всегда будут согласны по поводу очередности событий. Для перекрывающихся наблюдателей «до» и «после» инвариантны. Но для девушки, находящейся вне моего светового конуса, эти слова потеряют всякий смысл. Мое «до» может быть ее «после», ее причина может стать для меня следствием. Вы можете предположить, что нам не надо беспокоиться об этом, коль скоро мы никогда не сможем сверить свои записи об этих событиях. Но в квантовой механике это не совсем так. Согласно принципу неопределенности частица вне моего светового конуса все-таки с некоторой ненулевой вероятностью и в обход законов теории относительности находится также и внутри него. При этом может показаться, что частица перемещается быстрее света – иначе говоря, что она движется назад во времени.
Читать дальше
Конец ознакомительного отрывка
Купить книгу