Сасскинд колебался относительно применимости его принципа дополнительности к деситтеровскому горизонту, а Бэнкс не колебался ни секунды.
– Эта идея просто доводит принцип дополнительности для черных дыр до его логического завершения, – сказал он. – Информация никогда не покидает светового конуса наблюдателя; она просто накапливается на горизонте, поджариваясь там, как яичница-болтунья на сковородке в излучении Хокинга.
Причинный бриллиант – это ограненный алмаз, образованный комбинацией прошлых и будущих световых конусов наблюдателя, то есть вся та область пространства-времени, с которой наблюдатель на протяжении своей истории мог когда-либо взаимодействовать. Его полная, но конечная вселенная.
Я уже знала, чем плоха конечная вселенная: в ней нет места инвариантности. Инвариантные определения S- матрицы, частиц и струн требуют бесконечной границы на бесконечном удалении. А с конечными границами на конечном расстоянии ничего не выйдет. Прошло немало времени с тех пор, как я узнала: частицы – а стало быть, и струны – это неприводимые представления группы Пуанкаре. Но горизонты событий нарушают симметрию Пуанкаре. Именно это обстоятельство и привело к открытию излучения Хокинга, голографического принципа и обобщенного принципа дополнительности. В мире с горизонтами событий наблюдатели не могут прийти к согласию относительно того, где есть частицы, а где – просто пустое пространство. Причем ни один из них не более прав, чем любой другой. В деситтеровской вселенной, как наша, даже наиболее стабильные строительные блоки реальности оказываются зависимыми от наблюдателя.
– А что происходит с S- матрицей? – спросила я. – Неужели вам не нужна хоть какая-то бесконечная область, чтобы сохранить хоть какую-нибудь инвариантность?
– Вы правы, – сказал Бэнкс. – Если причинный бриллиант может когда-нибудь стать бесконечным, тогда все наблюдатели придут к согласию, и там будут калибровочно-инвариантные наблюдаемые вроде S- матрицы в асимптотически плоском пространстве. Но в деситтеровском пространстве такого никогда не случится… Сасскинд с соавторами хотят определить какие-нибудь наблюдаемые в пространстве с нулевой космологической постоянной и асимптотически суперсимметричной FRW-метрикой. Они хотят от де Ситтера неустойчивости и распада до фридмановского состояния.
– Но вы не думаете, что такое возможно?
– Нет, – ответил Бэнкс. – Эта идея основана на хаотической инфляции и ландшафте теории струн, а эти теории, я думаю, просто неверны.
Одна из причин, почему они неверны, пояснил он дальше, заключается в том, что у них в основе предположение о квантовых флуктуациях пространства-времени.
– А разве они невозможны? – спросила я потрясенно.
– Не в голографической картине пространства-времени, – сказал он.
Бэнкс пояснил, что, благодаря голографическому принципу, теперь стало возможно записать все свойства пространства-времени на языке квантовой механики. Что, конечно, был Святой Грааль. Квантовая гравитация.
Свойства пространства-времени разделяются на две категории: причинно-следственная структура и масштаб. Причинно-следственная структура говорит нам, для каких точек возможен обмен информацией, то есть это – взаимное расположение световых конусов. Масштаб говорит нам, насколько велики объекты.
Мне было удивительно слышать, что причинно-следственная структура может быть закодирована в квантовом языке. Учитывая концептуальную пропасть между теорией относительности и квантовая механикой, можно было бы подумать, что световые конусы не будут иметь ничего общего с чем-либо, даже отдаленно напоминающим квантовый мир.
Но ключом к разгадке, объяснил Бэнкс, была коммутативность.
Я уже знала кое-что о коммутативности. Я знала, к примеру, что определенные пары измерений – каждому из них соответствует какой-то оператор – не могут быть одновременно проведены с произвольной точностью. Одна из таких пар – координата пространственного положения и соответствующий ей импульс, другая – время и энергия; в обоих случаях мы имеем пары операторов, связанные с принципом неопределенности. Принцип неопределенности говорит нам, что порядок, в котором производятся измерения, влияет на результат. Измеряя первой координату, мы размываем информацию об импульсе; измеряя первым импульс, мы размываем информацию о положении в пространстве. Если результат измерений зависит от их порядка, то говорят, что соответствующие операторы не коммутируют.
Читать дальше
Конец ознакомительного отрывка
Купить книгу