Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
16 – (число, не равное 0)²

Так как мы вычитаем из 16 некую положительную величину, разность в любом случае будет меньше 16. Следовательно, площадь нашего прямоугольника будет максимальной при b = 4 и h = 8 – b = 4. И здесь нам открывается совершенно удивительно свойство геометрии: изначальный периметр – 16 м – вдруг оказывается не имеющим значения и отношения к задаче. Каким бы ни был этот показатель, оптимальной формой прямоугольника с периметром p будет квадрат с длиной сторон p /4.

Чтобы ответить на остальные вопросы, нам нужно разобраться в тех из них, которые на первый взгляд кажутся парадоксальными, а заодно и освежить в памяти школьные основы геометрии: почему сумма углов треугольника равна 180°? О чем нам рассказывает теорема Пифагора? Как определить, равна ли форма двух треугольников (и зачем вообще это нужно)?

Классика геометрии

Геометрия уходит корнями далеко вглубь веков – во времена Древней Греции. Оттуда же происходит и само название этой чудесной во всех отношениях науки: «гео» на древнегреческом означает «земля», «метрия» – «измерение». Оно говорит само за себя, давая нам ясное представление о том, зачем вообще придумали геометрию – чтобы измерять земельные участки, на которых планировалось вести строительство или другие работы. А еще ее использовали в астрономии. Но древние греки не были бы древними греками, если бы не отшлифовывали любое свое знание до абсолютно идеальных форм, превращая его в искусство – такое, каким не устают (и никогда не устанут) восхищаться их потомки, сколько бы тысячелетий ни прошло. И по сей день главной книгой геометрии остаются написанные в 300 году до нашей эры «Начала» Евклида – сокровищница всех наших знаний о геометрии, лучший на все времена учебник. В «Началах» разъясняется, что такое математическая строгость, дедуктивный и аксиоматический методы, доказательство… – Все то, на чем до сих пор строится любая работа любого математика.

Евклид выдвинул пять аксиом (также называемых постулатами ) – положений, интуитивно понятных каждому и потому не требующих доказательств. Именно они суть основа всего, из чего состоит геометрия – и все теоремы так или иначе базируются именно на них. То, что перечислено чуть ниже, конечно же, не являются цитатами из «Начал», но наши формулировки никоим образом не противоречат их сути. Итак:

Аксиома 1.Любые две точки пространства могут быть соединены только одним отрезком прямой.

Аксиома 2.Отрезок этот можно продолжать в обоих направлениях до бесконечности – так получаются прямые.

Аксиома 3.Для любых двух точек O и P можно очертить только одну окружность с центром в точке O и точкой P , лежащей на окружности.

Аксиома 4.Все прямые углы равны 90°.

Аксиома 5.Если точка Р не лежит на прямой l , можно провести через точку P одну и только одну прямую, которая будет параллельна прямой l .

Отступление

Думаю, тут важно оговориться, что здесь мы ведем речь о так называемой плоской геометрии (или планиметрии ) – особом разделе евклидовой геометрии , в основе которой лежат построения на двухмерной (скажем, x и y ) плоскости . Любое, даже самое незначительное изменение одной из аксиом приведет нас в некую совершенно иную (при этом весьма интересную и необязательно бесполезную) математическую систему. Есть, например, сферическая геометрия, которая изучает точки и фигуры не на плоскости, а на поверхности сферы: «прямые» в ней превращаются в круги с максимальной длиной окружностей (они называются большими кругами ), что приводит к обязательному их пересечению в той или иной точке, а значит, и к отрицанию существования параллельности.

А если в пятой аксиоме предположить, что через точку P можно провести не одну, а две прямых, параллельных прямой l, мы придем к системе, которая называется геометрией Лобачевского , и ко всему многообразию ее удивительных теорем. Многие художники – такие, скажем, как Мауриц Эшер [19]или Дуглас Данхэм [20] – используют ее для создания завораживающих графических композиций; последний, к слову сказать, любезно позволил мне показать вам одно из своих творений:

Конечно же пятью аксиомами сформулированными Евклидом геометрия не - фото 278

Конечно же, пятью аксиомами, сформулированными Евклидом, геометрия не ограничивается, поэтому не удивляйтесь, если на этих страницах вы найдете и другие. Ну а поскольку эта книга – отнюдь не учебник, мы, пожалуй, не будем тратить время на обстоятельное доказательство прописных истин и объяснение элементарных понятий, тем более с нуля. Я очень высокого мнения о своем читателе и считаю аксиомой, что он помнит со школы (или просто знает), что такое точка, прямая, угол, круг, периметр, площадь и так далее. К тому же я по мере сил буду избегать профессиональной лексики и всяких специфических и понятных, пожалуй, только математику, обозначений – ведь в центре нашего внимания не наука как таковая, но ее магия, способная затронуть струны любой, даже самой далекой от геометрии, души.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x