Артур Бенджамин - Магия математики - Как найти x и зачем это нужно

Здесь есть возможность читать онлайн «Артур Бенджамин - Магия математики - Как найти x и зачем это нужно» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент Альпина, Жанр: foreign_edu, Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия математики: Как найти x и зачем это нужно: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия математики: Как найти x и зачем это нужно»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Почему нельзя было раньше узнавать о числах, алгебре и геометрии в такой увлекательной форме? Почему нельзя было сразу объяснить, зачем нам все эти параболы, интегралы и вероятности. Оказывается, математика окружает нас. Она повсюду! По параболе льется струя воды из фонтана, а инженеры используют свойства параболы, чтобы рассчитать траекторию полета самолетов и спутников. С помощью интегралов можно вычислить, сколько вам нужно линолеума, чтобы застелить помещение непрямоугольной формы. А умение вычислять вероятность события поможет выиграть в покер.
«Магия математики» – та книга, о которой вы мечтали в школе. Все, от чего раньше голова шла кругом, теперь оказывается простым и ясным: треугольник Паскаля, математическая бесконечность, магические свойства чисел, последовательность Фибоначчи, золотое сечение. А ещё профессиональный фокусник Артур Бенджамин делится секретами математических фокусов. Продемонстрируйте их – ваши зрители точно потянутся за калькуляторами, чтобы пересчитать.

Магия математики: Как найти x и зачем это нужно — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия математики: Как найти x и зачем это нужно», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотите, расскажу вам о своей любимой бесконечной сумме? Вот она:

Чтобы доказать это обратимся к алгебраическим хитростям и так же как мы - фото 581

Чтобы доказать это, обратимся к алгебраическим хитростям и так же, как мы делали во втором доказательстве действительности конечного геометрического ряда, сдвинем отдельные элементы. Такой подход отлично срабатывает для конечных сумм, но в применении к суммам бесконечным он дает порой очень странные, порой абсурдные результаты. Применим его для начала к одному из предыдущих тождеств. Сумму запишем дважды – без сдвига и со сдвигом. Получится

Сложим эти два уравнения 2 S 1 Следовательно S будет равно 12 как мы - фото 582

Сложим эти два уравнения:

2 S = 1

Следовательно, S будет равно 1/2, как мы и рискнули предположить чуть выше, заменив x в геометрическом ряду на –1.

Отступление

Тот же метод можно использовать для быстрого (хотя и не вполне «законного») подтверждения формулы геометрического ряда.

Вычтем одно уравнение из другого Самое потрясающее то что знакочередующаяся - фото 583

Вычтем одно уравнение из другого:

Самое потрясающее то что знакочередующаяся версия желаемой нами суммы тоже - фото 584

Самое потрясающее то, что знакочередующаяся версия желаемой нами суммы тоже имеет очень любопытный ответ:

Сдвигаем записываем ответ дважды Складываем 2 T 1 1 1 1 1 1 - фото 585

Сдвигаем, записываем ответ дважды:

Складываем 2 T 1 1 1 1 1 1 1 1 Следовательно 2 T S - фото 586

Складываем:

2 T = 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 +…

Следовательно, 2 T = S = 1/2, то есть T = 1/4, как и было сказано.

Ну и, наконец, посмотрим, что произойдет, если представить сумму всех положительных целых как U и сравнить ее с уже известной нам суммой T (точнее, с ее рядом без сдвига):

U = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 +…
T = 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 +…

Вычтем второе из первого:

UT = 4 + 8 + 12 + 16 +… = 4(1 + 2 + 3 + 4 +…)

Другими словами,

UT = 4 U

Решая это уравнение для U , получаем 3 U = – T = –1/4, следовательно,

U = –1/12

как и предполагалось.

Для протокола отметим, что при сложении бесконечного количества положительных целых сумма расходится до бесконечности. Но не торопитесь списывать все наши конечные результаты на обычные чудеса математики – с подобными странностями можно и нужно разобраться. Достаточно просто посмотреть на числа под другим углом, и сумма 1 + 2 + 4 + 8 + 16 +… = –1 покажется не такой уж и невероятной.

В привязке к оси, как вы наверняка помните, казалось невозможным найти корень числа –1, но у нас получилось сделать это, когда мы трактовали комплексные величины как точки на комплексной же плоскости – точки, подчиняющиеся своим собственным арифметическим законам. Любой физик, занимающийся теорией струн [37], подтвердит, что 1 + 2 + 3 + 4 +… = –1/12, ведь именно на этой сумме основано множество его вычислений. Видите: даже самый абсурдный результат нельзя просто взять и отмести только на основании его абсурдности – всему есть свое объяснение, достаточно лишь напрячь воображение.

Давайте закончим эту книжку еще одним парадоксальным результатом. В начале раздела мы взяли знакочередующийся ряд

сходящийся к ln 2 0693147 От перемены мест слагаемых сумма по идее - фото 587

сходящийся к ln 2 = 0,693147…. От перемены мест слагаемых сумма, по идее, меняться не должна – этот принцип называется коммутативным законом сложения и выглядит как

A + B = B + A

для любых значений A и B . И тем не менее

Это именно перемена мест слагаемых мы попрежнему складываем дроби с нечетными - фото 588

Это именно перемена мест слагаемых: мы по-прежнему складываем дроби с нечетными значениями знаменателя и вычитаем дроби с четными значениями знаменателя. И хотя четные числа используются в ряду в 2 раза чаще, чем нечетные, тех и других у нас бесконечный запас. К тому же каждая из дробей встречается лишь единожды, как и в оригинальном уравнении. Правда? Правда. Но взгляните-ка:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия математики: Как найти x и зачем это нужно»

Представляем Вашему вниманию похожие книги на «Магия математики: Как найти x и зачем это нужно» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия математики: Как найти x и зачем это нужно»

Обсуждение, отзывы о книге «Магия математики: Как найти x и зачем это нужно» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x