Выбор Z1 и Z2 не произволен. Точка Z1 должна относиться к месту фронта, где температура Тz не превышает верхнюю границу устойчивости механизма автокатализа 520 К (рис. 1). Выше Z1 расположена переходная зона А-Т механизма, зона ОТК.
Данные исследований [7, 9-20] по скорости реакций убыли или накопления компонентов реакционной смеси в пределах монофронта бунзеновских пламён C1 – С 6углеводородов для диапазона а = 0,8 – 2,7; Т 0= 293 – 480 К и Р = 0,1 МРа подвергнуты обработке по указанной выше процедуре нахождения Ко 2, Кf К Н20или Кі в точках сечений Z1 и Z2. Максимальные отклонения от средней величины в материале указанных исследований по углероду не превышало 4-6 %, по кислороду 5-8 % и по водороду 5-7 %. Ниже (рис. 3-5) представлено распределение температуры и скорости потребления веществ в пламени гексана, демонстрирующее переход за точку бифуркации.
Рис. 3. Распределение температуры во фронте пламени гексана при различных Т 0: 1 – Т 0= 480К; 2 – Т 0= 404К; 3 – Т 0= 344К
Рис.4. Распределение скоростиубыли гексана во фронте пламени а = 2,7 при различных Т 0: 1 – Т 0= 344К; 2 – Т 0= 404К; 3 – Т 0= 480К.
Рис.5. Распределение скорости потребления кислорода в пламени гексана а = 2,7 при различных Т д: 1 – Т 0= 344К; 2 – Т 0= 404К; 3 – Т 0= 480К.
Данные по С 1– С 6пламенам сведены в таблицы 1 и 2.
Таблица 1
Значения 7К 01 (Z1) и 7К01 (Z2) и фактора стадийности S при различных Т0 и а по формуле (3).
Таблица 2
Значения фактора стадийности 8 монофронта пламен метана, пентана и гексана, вычисленных по формулам (2) – (4) по компонентам реакционной смеси
Из представленных результатов следует, что различные пламена с равным S-фактором идентичны при одинаковых Т 0. Возрастание Т 0сдвигает максимумы так же, как введение в смесь небольшого количества ингибитора, тетрафтордибромэтана или диэтиламина, которые представляют собой индикаторы зоны А. Величина Т 0также оказывает наибольшее влияние только на скорость процессов в зоне А, сдвигая его максимум в зону Т и создавая ОТК (рис. 1, 2). Кривые АКсо 2(рис. 1) практически не подвержены ОТК и влиянию Т 0в зоне А как и кривые для этилена, пропилена и ацетилена (рис. 6).
Рис.6. Распределение скорости образования ацетилена, этилена и метана во фронте пламени Н-пентана а = 1,7 при различных Т 6.
В зоне преобладания механизма А протекает лишь частичное окисление топлива, в результате которого нет конечных продуктов характерных для Т-механизма в роде СО 2и непредельных углеводородов. Явление ОТК более контрастно наблюдается в пламенах смесей с ростом С 0и Т 0. На рис. 10-12 представлены кривые потребления топлива а = 2,7 и кислорода при Т 0= 340 К; 404 К и 480 К в бифронте гексана, где отражена последовательность влияния Т Последовательность проявления ОТК на кривых АКо 2видна лишь со второй ступени изменения температуры, наблюдаемое отклонение хода скорости указывает на то, что избранная нами температурная граница для точки Ъ не достаточна для условий бифронта.
На основе анализа общих свойств и различий в процессах самораспространения и распространения пламени показано, что фронт пламени разделен на две зоны, в пределах которых преобладает блок реакций: 1) Низкотемпературного автокатализа (зона А) и 2) Температурного автокатализа (зона Т). Взаимодействие А – Т механизмов в пределах переменных С 0, Т 0и Р обуславливает степени стадийности фронта пламени.
Из представленного материала следует, что возникновение механизма формирования раздвоения монофронта обусловлено неединственностью механизма конверсии топлива, или ее следствием – степенью стадийности 8 при С 0= а >1. На этапе С 0= а < 1 устанавливается ведущая роль отрицательных е, т.е. зоны Т обусловлены диффузией атомов водорода от Т к А. При е > 0 скорость разветвления цепи в зоне А преобладает над скоростью поставок активных центров из зоны Т в виде диффузионного потока.
В подтверждение развиваемого А-т представления механизма бифуркации показано, что в зоне А концентрация продуктов Т-превращения пренебрежимо мала. Однако, их наличие в небольшом количестве все же указывает на ограниченность применения формул (2) – (4) в области С 0= а < 1.
Распределение в монофронте активных частиц и скорости тепловыделения, а так же анализ механизма формирования разрыва представлено в сообщении 2.
1. Семенов Н.Н. О некоторых проблемах химической кинетики и реакционной способности. – М.: Академиздат, 1958.
Читать дальше