Занимаясь поисками этой новой теории, мы должны держать в памяти три свойства природы, установленные в рамках квантово-механической теории: несовместимые вопросы, запутанность и нелокальность .
Каждая система обладает некоторым набором свойств: для элементарных частиц это положение в пространстве и импульс [106], а, например, для обуви – ее цвет и высота каблука. В отношении каждого свойства можно задать вопрос: “Где сейчас находится частица?” или “Какого цвета обувь?” Роль эксперимента как раз в том, чтобы, опросив систему, получить ответы на эти вопросы. Если вы желаете полностью описать систему в рамках классической физики, то должны ответить на все вопросы и получить информацию о всех свойствах системы. Но в квантовой теории, получив ответ на один из вопросов, вы попадаете в ситуацию, в которой ответ на второй вопрос получить невозможно.
Так, вы можете спросить, где находится частица или какой у нее импульс, но не можете узнать то и другое одновременно. Нильс Бор назвал это свойство комплементарностью (дополнительностью). Это имеют в виду физики, когда говорят о некоммутативных переменных . Если бы существовала квантовая мода, цвет обуви и высота каблука могли бы являться несовместимыми свойствами. В классической физике вам не надо выбирать, какое из свойств измерить, а какое оставить как неизмеряемое. И вот вопрос: влияет ли выбор экспериментатора на свойства исследуемой системы?
Запутанность – также чисто квантово-механическое явление: пары квантовых систем могут обладать определенными свойствами, при этом свойства каждой отдельно остаются неопределенными. То есть вопрос об относительных свойствах двух систем имеет определенный ответ, а ответа на вопрос о свойствах каждой системы отдельно нет. Рассмотрим пару квантовых ботинок. Они могут обладать противоположными свойствами: на любой вопрос каждый ботинок даст противоположный ответ. Если вы спросите ботинки об их цвете, левый ответит “белого”, правый – “черного”, и наоборот. Или поинтересуемся высотой каблука: если левый – высокий, правый обязательно окажется низким, и наоборот. Если спросить лишь левый ботинок о высоте каблука, вы услышите (с вероятностью 50 %) “высокий” либо “низкий”. Аналогично, в отношении цвета ботинка ответ будет “белый” либо “черный” (с той же вероятностью). На самом деле, если квантовая пара имеет противоположные свойства, то на любой вопрос о свойствах одного ботинка будет получен случайный ответ, а на вопрос, адресованный паре, будут определенно даны противоположные ответы.
В классической физике свойства пары частиц сводятся к свойствам каждой из них отдельно. Явление запутанности свидетельствует о том, что для квантовых систем это не так. Для наших рассуждений важно, что благодаря запутанности мы можем создавать системы с новыми свойствами. Если мы запутаем две квантовые системы с противоположными свойствами, которые никогда прежде не взаимодействовали, мы создадим новое свойство, которое ранее в природе не встречалось.
Запутанные пары обычно получаются при взаимодействии двух субатомных частиц. Однажды запутавшись, они так и остаются в запутанном состоянии, даже разлетевшись на большое расстояние. И пока одна из этих частиц не взаимодействует с другой системой, пара остается в запутанном состоянии с противоположными свойствами. Здесь мы подошли к третьему, самому поразительному свойству квантовых систем – нелокальности .
Мы в Монреале. Возьмем пару запутанных ботинок с противоположными свойствами: левый отправим в Барселону, а правый – в Токио. Экспериментаторы в Барселоне решают определить цвет ботинка. Это решение мгновенно повлияет на цвет токийского ботинка. Как только наблюдатели в Барселоне определили цвет своего ботинка, они могут предсказать, что ботинок в Токио имеет противоположный цвет.
В XX веке мы привыкли к тому, что физическое взаимодействие локально, то есть передача информации из одного места в другое происходит посредством частиц или волн. Согласно специальной теории относительности, любое воздействие распространяется не быстрее скорости света. Получается, что в квантовой физике этот основной постулат теории относительности нарушается.
Нелокальные эффекты в квантовой теории действительно присутствуют, но они не могут быть использованы для передачи информации между Барселоной и Токио. Какое бы свойство обуви ни выбрали для измерения экспериментаторы в Токио, результат измерений будет случаен. Их ботинок будет с одинаковой вероятностью то белым, то черным. Только тогда, когда они узнают, какого цвета ботинок в Барселоне, они смогут убедиться, что пара разного цвета. А чтобы в этом убедиться, необходимо передать информацию из Барселоны в Токио, то есть передать сигнал со скоростью света или медленнее.
Читать дальше
Конец ознакомительного отрывка
Купить книгу