Категорическое предупреждение в 1616 году призвало Галилея умерить свой пыл в отношении новой астрономии. Он более-менее подчинился. Но он не был человеком, способным выставить себя на посмешище, ради престижа кого-то другого. В своем великом диалоге (1632) о двух системах астрономии Птолемея и Коперника он, безусловно, обеспечил победу последней. Но духовные последователи Аристотеля издали декрет, что именно первая является истинной астрономией. Бесчисленные цитаты из Священного Писания противостояли Копернику, а следовательно, и Галилею.
Длительная игра в кошки-мышки, где в роли мышки выступал человек науки, подошла к концу. Галилея притащили в святую инквизицию. Там последовало судебное разбирательство, до сих пор остающееся классическим примером нудности и глупости. Астроном-еретик был приговорен 22 июня 1633 года к отречению от теории Коперника и своих собственных учений, как противоречащих Священному Писанию.
Официальный документ, приговоривший обвиняемого к торжественному отречению, пожизненному заключению и чтению семи покаянных псалмов раз в неделю, был подписан семью из десяти кардиналов, вершивших суд. Галилей отрекся. Ему шел семидесятый год, здоровье было подорвано, и он был унижен перед дураками. Ему хватило здравого смысла не дать возможности поучаствовать в очередном празднике Рима, наподобие того, что устроил Бруно.
Математикам следовало бы поинтересоваться и прочитать оригинальный документ (слишком длинный, чтобы воспроизводить его в данной работе), поскольку в нем в последний раз в истории они и их методы выделены для особо жесткой официальной цензуры. С тех пор историческое неодобрение математиков стало восприниматься слишком незначительным, чтобы становиться объектом проявления официального высокомерия.
Вклад Галилея в восхождение современной науки иногда преуменьшают историки естествознания, но никогда этого не делают действующие ученые, которые знают что-то об истории науки. Справедливо, что другие говорили о сочетании математики с наблюдением и опытом. Галилей никогда не был первым из тех, кто настаивал, что принципы естественных наук должны приобретаться через опыт, подтверждаться, где это возможно, математически и должны формировать базис дедуктивной системы, выводы которой могут быть проверены эмпирически. Но он произнес это более четко и более ясно по сравнению с другими. Что еще более важно, он был первым, кто сопроводил красноречие действием в масштабе, показавшим всем, кроме сознательно зашоренных, что метод, защитником которого он являлся и который он применял на практике, принес победу там, где остальные потерпели поражение. Среди современников Галилея и соперников его по славе очень часто называется Декарт, живший в 1596–1640 годах, зачастую именуемый первым современным философом. Он был одним из нескольких ученых, сказавших о научном методе так же много, как и Галилей. Но гений философа был сильно склонен к математике и абстракции, и, вместо плохо законспирированной зависти к Галилею, Декарт не обращал на него внимания как на ученого. Уже было показано, что Декарт оставался платоновским реалистом в математике, а Галилей возносил математику не менее энергично, чем это делал Платон. Но там, где Декарт был доволен своим математическим реализмом, Галилей не мог оставаться в полном восхищении. Он продолжал работать.
Наш интерес к Галилею в данной работе вызван его вкладом в теорию математической бесконечности. Из его саркастического замечания в одном из диалогов невозможно определить, серьезно ли воспринимал сам Галилей свой эпохальный комментарий или просто произнес его злонамеренно, чтобы привести в замешательство глупого последователя Аристотеля посредством его же собственной логики. Каким бы ни был мотив его поступка, Галилей устранил основное различие между конечным и бесконечным множествами.
Под словом «вклад» следует понимать часть, а не все. В конечном множестве присутствует всегда больше элементов, чем в любой его части. Галилей на примере показал, что часть бесконечного множества содержит то же количество элементов, что и все бесконечное множество. Два множества содержат «одинаковое число» элементов, когда, взяв поочередно из каждого множества по одному элементу, мы образуем из них пары таким образом, чтобы после спаривания ни в одном из множеств не осталось свободных элементов. Это просто объяснение того, что имеется в виду, когда мы подразумеваем, что два множества содержат равное количество элементов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу