Принцип неопределенности Гейзенберга
Мы видим, что невозможно получить определенное значение спина на двух разных осях в одно и то же время. Эту неустранимо неопределенную природу квантовой механики увековечил Вернер Гейзенберг, один из основателей квантовой механики. Он назвал ее «принципом неопределенности». Принцип неопределенности гласит, что если значение какой-то физической величины точно известно, то значение дополнительной к ней (комплементарной) величины является неопределенным . Спин относительно вертикальной оси и относительно поперечной оси – как раз такие взаимодополняющие величины: если вы знаете одну, то не можете знать другую. Другая пара взаимодополняющих величин – положение и скорость: если мы точно знаем положение частицы, то ничего не знаем о том, как быстро она движется. (Анекдот в тему. Полицейский останавливает машину Гейзенберга: «Профессор, вы вообще представляете, с какой скоростью вы едете?» Гейзенберг: «Нет, но зато я точно знаю, где я нахожусь».)
Принцип неопределенности Гейзенберга выражает компромисс между степенью определенности значения одной физической величины, например положения, и значения дополнительной величины, например скорости. Чем более точно значение одной величины, тем менее точно значение другой. Поэтому любая процедура (к примеру, измерение или наблюдение), которая делает значение некоторой физической величины более точным, обязательно делает значение дополнительной величины менее точным. Вновь мы видим, что измерения нарушают состояние измеряемой системы .
Этот тревожный аспект принципа неопределенности Гейзенберга глубоко пустил корни в научный фольклор. Например, иногда с помощью принципа неопределенности пытаются объяснить (неверно), почему антропологи неизбежно изменяют те сообщества, которые они изучают. (Как говорится, когда антрополог стучит в дверь, правда вылетает в окно.) На самом деле принцип неопределенности Гейзенберга обычно имеет значение только на очень малых масштабах, например на атомном уровне. Даже самые глубинные антропологические исследования проводятся на уровне, слишком высоком для того, чтобы мог проявиться принцип неопределенности.
Совсем нетрудно изменить состояние квантового бита, или кубита, – инвертировать, или «перещелкнуть» его. Вспомните пример спинового эха: когда ядерный спин помещается в магнитное поле, он прецессирует относительно этого поля. Возьмем спин, который первоначально имеет направление «вверх» (то есть |0>), и применим к нему поле, направленное к нам. Пройдет половина времени, необходимого для того, чтобы спин описал полный круг, и прецессия переведет его в состояние «вниз», или |1>. (Если же спин первоначально имел направление «вниз», или |1>, то за это же время он повернется до состояния «вверх», или |0>.) Таким образом, при помощи магнитного поля мы меняем состояние кубита на противоположное.
Варьируя время действия магнитного поля, можно помещать спин в различные суперпозиции. Например, начнем со спина «вверх» и приложим поле на четверть того времени, которое необходимо для прецессии на полный круг; теперь спин находится в состоянии «на боку вправо», то есть |0> + |1>. А можно начать со спина «вверх» и приложить поле на три четверти времени, необходимого для полного круга прецессии; в результате спин будет находиться в состоянии «на боку влево», или |0> – |1>. Прикладывая магнитное поле к другим отрезкам времени, можно повернуть спин в любые желаемые суперпозиции состояний.
Такие ротации отдельного кубита – квантовые аналоги классических преобразований отдельного бита, например операции «не». Благодаря существованию суперпозиций к квантовому биту можно применить намного больше преобразований, чем к классическому биту. Одно общее свойство, которое есть у преобразований классических битов и кубитов, состоит в том, что эти преобразования взаимно однозначные. Подобное действие легко отменить: достаточно просто вращать кубит назад – относительно той же оси, но в противоположном направлении. Как и преобразования, разрешенные классической физикой, ротации кубитов сохраняют информацию.
Перейдем теперь к взаимодействию между кубитами. Рассмотрим преобразование двух кубитов, являющееся квантовым аналогом операции «условное не», описанной выше. Как мы помним, операция «условное не» инвертирует второй бит в том и только том случае, если значение первого бита – 1. Таким образом, она превращает 00 в 00, 01 в 01, 10 в 11 и 11 в 10. Эта операция является взаимно однозначной, и ее можно легко обратить, выполнив второй раз. Аналогичная квантовая операция точно так же изменяет квантовые состояния: |00> в |00>, |01> в |01>, |10> в |11> и |11> в |10>. Здесь состояние |00> соответствует «объединенной волне» двух квантовых битов, взятых вместе, где первый кубит находится в состоянии |0>, а второй кубит тоже находится состоянии |0>.
Читать дальше
Конец ознакомительного отрывка
Купить книгу