Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки

Здесь есть возможность читать онлайн «Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Array Литагент «Альпина», Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Программируя Вселенную. Квантовый компьютер и будущее науки: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Программируя Вселенную. Квантовый компьютер и будущее науки»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Каждый атом Вселенной, а не только различные макроскопические объекты, способен хранить информацию. Акты взаимодействия атомов можно описать как элементарные логические операции, в которых меняют свои значения квантовые биты – элементарные единицы квантовой информации. Парадоксальный, но многообещающий подход Сета Ллойда позволяет элегантно решить вопрос о постоянном усложнении Вселенной: ведь даже случайная и очень короткая программа в ходе своего исполнения на компьютере может дать крайне интересные результаты. Вселенная постоянно обрабатывает информацию – будучи квантовым компьютером огромного размера, она все время вычисляет собственное будущее. И даже такие фундаментальные события, как рождение жизни, половое размножение, появление разума, можно и должно рассматривать как последовательные революции в обработке информации.

Программируя Вселенную. Квантовый компьютер и будущее науки — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Программируя Вселенную. Квантовый компьютер и будущее науки», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Двухщелевой эксперимент иллюстрирует тот факт, что частица не обязательно должна быть или «здесь», или «там». Благодаря присущей ей волновой природе частица может быть и «здесь», и «там» одновременно. Эта способность вещей находиться во многих местах сразу и обеспечивает ту мощь квантовых вычислений, с которой мы познакомимся позже.

Декогерентность

Если вещи могут находиться в двух местах одновременно, то почему нам неизвестны случаи, когда камни, люди и планеты видны в нескольких местах сразу? Австрийский физик Антон Цейлингер успешно провел двухщелевой эксперимент над так называемыми бакиболами – конструкциями, состоящими из шестидесяти атомов углерода и напоминающими по форме футбольный мяч [22]. Сейчас он планирует провести двухщелевой эксперимент над бактериями, которые примерно в 100 раз больше по размеру, чем бакиболы. Но чем больше объект, тем труднее «уговорить» его оказаться в двух местах сразу. (Большие объекты обычно ведут себя «классически», а не квантово-механически.) Причина этого – не столько физический размер объекта, сколько возможность его видеть. Чем объект больше, тем больше взаимодействий он испытывает со своим окружением, поэтому его легче обнаружить. Чтобы пройти через обе щели одновременно и создать интерференционную картину, частица должна пройти через щели незамеченной .

Предположим, в правую щель мы помещаем датчик. Датчик регистрирует присутствие или отсутствие частицы в щели, позволяя в то же время частице пройти через нее без изменений. Когда датчик обнаруживает частицу, он щелкает. Теперь выполним эксперимент с двумя щелями при работающем датчике. Посмотрим на экран. Ой… интерференционная картина исчезла!

Что же произошло? Мы помним, что интерференционная картина возникает из-за волны, связанной с частицей. Эта волна, естественно, проходит через обе щели сразу. Если наш датчик работает, частица, проходящая через правую щель, заставляет его щелкнуть, а если частица пройдет через левую щель, щелчка не будет. (Щелкает ли датчик, это случайный процесс: частица может пройти через одну или другую щель с равной вероятностью.)

Когда датчик щелкает и обнаруживает частицу, соответствующая ей волна локализуется к правой щели. Если датчик не щелкает, волна локализуется к левой щели. Этот процесс локализации волны иногда называют «коллапсом волновой функции». Получается, что, если датчик «наблюдает» правую щель, частица становится обязанной пройти либо через одну щель, либо через другую; она больше не проходит через обе щели сразу! А так как волна, соответствующая частице, также перестает проходить через обе щели одновременно, она уже не может интерферировать сама с собой, чтобы создать темные и светлые полосы интерференционной картины.

Наблюдение (или измерение, как его традиционно называют) разрушает интерференцию . Если измерения нет, частица благополучно проходит через обе щели сразу; при наличии измерения она проходит только через одну или другую щель. Другими словами, измерение всегда меняет поведение частицы. Когда мы спрашиваем частицу, где она находится, она вынуждена признаться, что находится в одном или в другом месте, но уже не в двух местах сразу.

Интересно отметить, что в описанном выше эксперименте измерение нарушает волну частицы независимо от того, щелкает ли датчик. По условию, датчик щелкает только в том случае, если частица проходит через правую щель, где он, собственно, и находится. Но если щелчка датчика нет, а это означает, что частица прошла через левую щель, интерференционная картина все равно разрушается, то есть измерение все еще нарушает волну частицы. Частице не нужно даже приближаться к датчику. (Как ваша голова, все еще кружится?)

Наш датчик не обязательно должен быть макроскопическим устройством. Все, что требуется для того, чтобы разрушить интерференционную картину, – это некая система сколь угодно малого размера, которая может получить информацию о положении частицы. Если частица сталкивается с пролетающим мимо электроном или молекулой воздуха, это тоже разрушит интерференционную картину!

Теперь ясно, почему мы видим большие объекты только в одном или в другом месте, но не в обоих сразу. Камни, люди и планеты постоянно взаимодействуют со своим окружением. Каждое взаимодействие с электроном, молекулой воздуха, частицей света локализует систему. Большие объекты взаимодействуют с большим количеством небольших объектов, каждый из которых получает информацию о местоположении большого объекта. Поэтому большие объекты, как правило, обнаруживаются или здесь, или там, но не здесь и там одновременно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Программируя Вселенную. Квантовый компьютер и будущее науки»

Представляем Вашему вниманию похожие книги на «Программируя Вселенную. Квантовый компьютер и будущее науки» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктор Филалетов - Будущее науки
Виктор Филалетов
Отзывы о книге «Программируя Вселенную. Квантовый компьютер и будущее науки»

Обсуждение, отзывы о книге «Программируя Вселенную. Квантовый компьютер и будущее науки» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x