Когда два классических бита взаимодействовали в ходе операции «условное не», энтропия бита частицы заразила бит датчика. Два бита стали коррелировать, и энтропия бита датчика увеличилась. Когда два кубита взаимодействуют в ходе квантовой операции «условное не», они также начинают коррелировать, и энтропия кубита датчика увеличивается. Но эта энтропия возникла не из кубита частицы. В квантовом случае, до того как была применена операция «условное не», кубит частицы находился в четко определенном состоянии с нулевой энтропией. Откуда же взялась информация?
В квантовой механике, в отличие от классической, информация может возникать из ничего . Возьмем наши два кубита в их коррелированном состоянии, |00> + |11>, где волна первого кубита коррелирует с волной второго кубита. Это определенное квантовое состояние, и его энтропия равна нулю. Но каждый из кубитов, взятый отдельно, находится в абсолютно неопределенном состоянии: или |0>, или |1>. Таким образом, у каждого квантового бита теперь есть один полный бит энтропии.
Этот странный тип квантовой корреляции называют «запутанностью». Если классическая система находится в определенном состоянии, с нулевой энтропией, то все части системы также находятся в определенном состоянии, с нулевой энтропией. Если мы знаем состояние целого, то также знаем и состояние частей. Например, если два бита находятся в состоянии 01, то первый бит находится в состоянии 0, а второй бит находится в состоянии 1. А вот когда квантовая система находится в определенном состоянии, таком как коррелированное состояние наших квантовых битов, части системы не обязаны находиться в определенном состоянии . В запутанных состояниях мы можем знать состояние квантовой системы в целом, но не знать состояния отдельных ее частей!
Когда части квантовой системы становятся запутанными, их энтропии увеличиваются. Почти любое взаимодействие запутывает части квантовой системы. Вселенная является квантовой системой, и почти все ее части запутаны. Позже мы увидим, как запутанность позволяет квантовым компьютерам делать то, чего не могут делать классические компьютеры. Здесь же мы узнали, что запутанность ответственна за создание информации во Вселенной.
Призрачное дальнодействие
Запутанность приводит к тому, что Эйнштейн назвал «призрачным дальнодействием» [25]. Рассмотрим состояние двух квантовых битов, выраженное формулой |01> – |10>. Смысл этой записи следующий. Если мы увидим, что значение первого кубита 0, то значение второго кубита будет 1. Аналогичным образом, если мы увидим, что значение первого кубита 1, то значение второго кубита будет 0. Таким образом, два наших кубита – противоположность друг другу. Будем для примера считать, что два кубита сделаны из ядерных спинов. Если мы измерим первый спин вдоль некоторой оси и увидим, что это спин «вверх», то состояние второго спина будет «вниз».
Пока не видно никакого подвоха. Два спина имеют противоположные направления, независимо от того, какую ось выбрать для измерения этого направления. Проблема же состоит в том, что перед измерением первого кубита оба кубита находятся в абсолютно неопределенном состоянии. Измерение первого кубита переводит его в определенное состояние, |0> или |1>. Это не удивительно – на то и измерение, чтобы определять состояние измеряемого объекта. Удивительно то, что измерение спина первой частицы относительно некоторой оси переводит и вторую частицу в определенное спиновое состояние относительно этой оси. Иначе говоря, если мы хотим измерить первый спин относительно вертикальной оси, то после измерения второй спин также будет находиться в определенном состоянии вращения вдоль вертикальной оси. Если мы хотим измерить первый спин относительно поперечной оси, то после измерения второй спин также будет находиться в определенном состоянии относительно поперечной оси. Получается, что каким-то таинственным образом измерение первого спина делает что-то и со вторым спином. И что самое интересное, первая частица вовсе не обязана находиться рядом со второй. После того как возникла запутанность, одну частицу можно оставить на Земле, а вторую отправить на альфу Центавра!
Но как можно, измеряя что-то на Земле, одновременно воздействовать на что-то, находящееся на альфе Центавра, отстоящей от нас на четыре с лишним световых года? Никакой сигнал не может дойти туда раньше чем через четыре года, тем более одновременно. Именно это имел в виду Эйнштейн, когда назвал эффект запутанности «призрачным дальнодействием». Ранее вместе с Борисом Подольским и Натаном Розеном он написал знаменитую статью о том, что сейчас принято называть парадоксом Эйнштейна – Подольского – Розена. Авторы указали на контринтуитивный характер квантовой запутанности и показали, что это явление [26]подразумевает ужасную вещь: в мире не существует фундаментальных «элементов реальности».
Читать дальше
Конец ознакомительного отрывка
Купить книгу